Simulink®

Graphical User Interface

7

MATLAB&SIMULINK

R2022b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Graphical User Interface
© COPYRIGHT 1990-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Simulink 7.0 (Release 2007Db)

Revised for Simulink 7.1 (Release 2008a)
Revised for Simulink 7.2 (Release 2008b)
Revised for Simulink 7.3 (Release 2009a)
Revised for Simulink 7.4 (Release 2009b)
Revised for Simulink 7.5 (Release 2010a)
Revised for Simulink 7.6 (Release 2010b)
Revised for Simulink 7.7 (Release 2011a)
Revised for Simulink 7.8 (Release 2011b)
Revised for Simulink 7.9 (Release 2012a)
Revised for Simulink 8.0 (Release 2012b)
Revised for Simulink 8.1 (Release 2013a)
Revised for Simulink 8.2 (Release 2013b)
Revised for Simulink 8.3 (Release 2014a)
Revised for Simulink 8.4 (Release 2014b)
Revised for Simulink 8.5 (Release 2015a)
Revised for Simulink 8.6 (Release 2015b)

Rereleased for Simulink 8.5.1 (Release 2015aSP1)

Revised for Simulink 8.7 (Release 2016a)
Revised for Simulink 8.8 (Release 2016b)
Revised for Simulink 8.9 (Release 2017a)
Revised for Simulink 9.0 (Release 2017b)
Revised for Simulink 9.1 (Release 2018a)
Revised for Simulink 9.2 (Release 2018b)
Revised for Simulink 9.3 (Release 2019a)
Revised for Simulink 10.0 (Release 2019b)
Revised for Simulink 10.1 (Release 2020a)
Revised for Simulink 10.2 (Release 2020b)
Revised for Simulink 10.3 (Release 2021a)
Revised for Simulink 10.4 (Release 2021b)
Revised for Version 10.5 (Release 2022a)
Revised for Version 10.6 (Release 2022b)

Contents

Configuration Parameters Dialog Box

1]

Model Configuration Pane

Model Configuration Overview,

Name
Description

Configuration Parameters

Simulink Configuration Parameters: Advanced

2|

Test hardware is the same as production hardware

Description

Settings

Tip ...
Dependency
Recommended settings

Test device vendorand type

Description

Settings
Tips

Dependencies

Command-Line Information

Recommended Settings

Number of bits: char
Description

Settings

Tip...............
Dependencies

Command-Line Information

Recommended Settings

Number of bits: short

Description

Settings

Tip...............
Dependencies

Command-Line Information

Recommended Settings

NNDNDNDNIDN

NNNNNN

[:J[\J[\J[\J
mWWwWoOWww

NN
—

t
—
[$)]

2-15
2-15
2-15
2-15
2-15
2-15

2-17
2-17
2-17
2-17
2-17
2-17
2-17

vi

Contents

Numberof bits:int
DesSCripliono
Setlings o e
TD o
Dependenciesttt
Command-Line Information
Recommended Settings

Numberofbits:long
DesCription i e e
Settings o
5
Dependenciesttt
Command-Line Information
Recommended Settings

Numberof bits:longlong
DesCription e e e e
Settings e
TIDS o e
Dependenciest
Command-Line Information
Recommended Settings

Numberofbits: float
DesCriplion e e e
Setlings . . .o
Command-Line Information
Recommended Settings

Number of bits: double
DesCription e e
Setlings . ..o
Command-Line Information
Recommended Settings

Number of bits: native
DeSCriplionot
Setlings o e
TD o
Dependenciesvi it
Command-Line Information
Recommended Settings

Number of bits: pointer,
DesSCriplionot
Setlings o e
Dependenciesttt
Command-Line Information
Recommended Settings

Numberof bits:size t
DesCriptiono i e e e
Settings e
Dependenciesttt e

Command-Line Information
Recommended Settings

Numberof bits: ptrdiff t
DesCription e e
Settings o e
Dependenciesttt
Command-Line Information
Recommended Settings

Largest atomic size: integer
DesSCriplion e e e
Settings
51
Dependenciest
Command-Line Information
Recommended Settings

Largest atomic size: floating-point
DesCTiption e e
SetlingS . . oo
TD o e
Dependencies e
Command-Line Information
Recommended Settings

Byteordering
DesCriplion e
Setlings . ..o e
Dependencies
Command-Line Information
Recommended Settings

Signed integer divisionroundsto
DesSCriplionot
Setlings o
TIPS ot
DEPENAENCY . . . ittt e e
Command-Line Information
Recommended settings

Shift right on a signed integer as arithmetic shift
DesSCriplionot
Setlings o
TIPS oo e
DEPENAENCY . . . ittt et e
Command-Line Information
Recommended settings

Supportlonglong
DesCription e e
Settings e
DS o e
Dependenciesttt
Command-Line Information

viii

Contents

Recommended Settings

Allowed unit systems
Description

Settings

Tip ... o

Command-Line Information

Units inconsistencymessagest

Description

Settings

Command-Line Information

Allow automatic unit conversions

Description

Settings

Command-Line Information

Dataset signal format

Description

Settings

Comparison of Formats

Tips
Programmatic Use

Recommended Settings

Stream To Workspace blocks

Description

Settings
Tips
Programmatic Use

Recommended Settings

Array bounds exceeded . .
Description

Settings
Tips

Command-Line Information

Recommended Settings

Model Verification block enabling

Description

Settings

Dependency

Command-Line Information i

Recommended Settings

Check undefined subsystem initialoutput

Description

Settings
Tips

Dependency

Command-Line Information

Recommended Settings

2-44

2-46
2-46
2-46
2-46
2-47

2-48
2-48
2-48
2-48

2-49
2-49
2-49
2-49

2-50
2-50
2-50
2-50
2-52
2-52
2-53

2-54
2-54
2-54
2-54
2-54
2-55

2-56
2-56
2-56
2-56
2-56
2-57

2-58
2-58
2-58
2-58
2-58
2-58

2-60
2-60
2-60
2-60
2-61
2-61
2-62

Detect multiple driving blocks executing at the same time step

DeSCriplionot
Settings
Tips ... o

Command-Line Information

Recommended Settings . . .

Underspecified initialization detection

DesCription o e e e
Settings
Tips ...
Dependenciesttt

Command-Line Information

Recommended Settings . . .

Solver data inconsistency
DesCriplion e e e
Settings
Tips ...

Command-Line Information

Recommended Settings . . .

Ignored zero crossings
DesCription e e
Settings
Tips i

Command-Line Information

Recommended Settings . . .

Masked zero crossings
DesCriplion e
Settings
Tips

Command-Line Information

Recommended Settings . . .

Block diagram contains disabled library links

DesSCriplionot e
Settings
Tip ...

Command-Line Information

Recommended Settings . . .

Block diagram contains parameterized library links

DesSCriplionot
Settings
Tipso .

Command-Line Information

Recommended Settings . . .

Initial stateisarray
DesCription e e e
Settings
Tips ... i

Command-Line Information

2-63
2-63
2-63
2-63
2-63
2-63

2-65
2-65
2-65
2-65
2-65
2-66
2-66

2-67
2-67
2-67
2-67
2-68
2-68

2-69
2-69
2-69
2-69
2-69
2-70

2-71
2-71
2-71
2-71
2-71
2-71

2-72
2-72
2-72
2-72
2-72
2-72

2-74
2-74
2-74
2-74
2-74
2-74

2-75
2-75
2-75
2-75
2-75

ix

X

Contents

Recommended Settings

Insufficient maximum identifierlength

Description

Settings

Command-Line Information

Recommended Settings

Import custom code
Description

Settings

Command-Line Information

Recommended Settings

Compiler optimizationlevel

Description

Settings
Tips

Command-Line Information

Recommended Settings

Verbose accelerator builds
Description

Settings

Command-Line Information

Recommended Settings

Implement logic signals as Boolean data (vs. double)

Description

Settings
Tips

Dependencies

Command-Line Information

Recommended Settings

Block reduction
Description

Settings
Tips

Dead Code Elimination

Highlight Reduced Blocks i,
Command-Line Information

Recommended Settings

Conditional input branch execution

Description

Settings

Command-Line Information

Recommended Settings

Break on Ctrl+C
Description

Settings

Command-Line Information

Recommended Settings

2-75

2-77
2-77
2-77
2-77
2-77

2-79
2-79
2-79
2-80
2-80

2-81
2-81
2-81
2-81
2-81
2-81

2-83
2-83
2-83
2-83
2-83

2-84
2-84
2-84
2-84
2-84
2-85
2-85

2-86
2-86
2-86
2-86
2-86
2-87
2-88
2-89

2-90
2-90
2-90
2-90
2-90

2-92
2-92
2-92
2-92
2-92

Compile-time recursion limit for MATLAB functions
DesSCriplionot
Setlings o e
Command-Line Information

Enable implicit expansion in MATLAB functions
DesCription e e e
Settings e
Command-Line Information

Enable run-time recursion for MATLAB functions
DesSCriplion e
Settings e
Command-Line Information

Dynamic memory allocation in MATLAB functions
DesCriplion e
Setlings . . oo e
DePENAENCY . . oottt
TIDS o e
Command-Line Information
Recommended Settings

Dynamic memory allocation threshold in MATLAB functions
DesCriplion e
Setlings . ..o
DePENAENCY . . .ottt e
Command-Line Information
Recommended Settings

Echo expressions without semicolons
DesSCriplionot e e
Setlings o
TaD o
Command-Line Information
Recommended Settings

Enable continuous-time MATLAB functions to write to initialized
persistent variables
DesCriplionot e e
Settings o e
TIPS oo e e
Command-Line Information
Recommended Settings

Allow setting breakpoints during simulation
DesCription e e
Settings e
TIDS o e e e e
Command-Line Information
Recommended Settings

Reserved names it
DesCriplion
Settings e

xii

Contents

Tips oo oo

Command-Line Information

Recommended Settings . . .

Enable memory integritychecks

Description

Settings
Tips ...

Command-Line Information

Recommended Settings . . .

Generate typedefs for imported bus and enumeration types

Description

Settings
Tips ...

Command-Line Information

Use local custom code settings (do not inherit from main model)

Description

Settings
Dependency

Command-Line Information

Recommended Settings . . .

Allow symbolic dimension specification

Description

Settings

Command-Line Information

Recommended Settings . . .

Enable decoupled continuous integration

Description

Settings

Command-Line Information

Recommended Settings . . .

Enable minimal zero-crossing impact integration

Settings

Dependencies

Tips oo oo

Command-Line Information

Recommended Settings . . .

Detect ambiguous custom storage class finalvalues

Description

Settings
Tip ..o

Command-Line Information

Recommended Settings . . .

Detect non-reused custom storage classes

Description

Settings
Tip ...

Command-Line Information

2-105
2-105
2-105

2-107
2-107
2-107
2-107
2-107
2-107

2-109
2-109
2-109
2-109
2-109

2-110
2-110
2-110
2-110
2-110
2-110

2-111
2-111
2-111
2-111
2-111

2-112
2-112
2-112
2-112
2-112

2-114
2-114
2-114
2-114
2-114
2-114

2-115
2-115
2-115
2-115
2-115
2-116

2-117
2-117
2-117
2-118
2-118

Recommended Settings 2-118

Combine output and update methods for code generation and simulation

.. 2-119
DesSCripliono e 2-119
Settings o e 2-119
TaPS o e e 2-119
Command-Line Information 2-119
Recommended Settings 2-120

Include custom code for referenced models 2-121
Descriplion e 2-121
Settings 2-121
TIPS o e e e 2-121
Command-Line Information 2-121
Recommended Settings 2-121

Hardware acceleration 2-122
DesCription e 2-122
Setlings o 2-122
Command-Line Information 2-122
Recommended Settings 2-122

Behavior when pregenerated library subsystem code is missing 2-123
DesCriplion 2-123
Setlings o 2-123
T . 2-123
Command-Line Information 2-123
Recommended Settings 2-123

Arithmetic operations in variant conditions 2-125
DesSCripliono vt e e 2-125
Settings o 2-125
Command-Line Information 2-125
Recommended Settings 2-125

Variant activation time inherited from Simulink.VariantControl 2-127
DesSCripliono i i e 2-127
Settings o e 2-127
Command-Line Information 2-127
Recommended Settings 2-127

FMU Importblocks 2-129
DesCripliono it e 2-129
Settings o e 2-129
Command-Line Information 2-129
Recommended Settings 2-129

Variant condition mismatch at signal source and destination 2-130
DesCriplionot e 2-130
Settings e 2-130
Command-Line Information 2-130
Recommended Settings 2-130

Prevent Creation of Unused Variables for Lenient Variant Choices . .. 2-132

xiii

xiv

Contents

Prevent Creation of Unused Variables for Unconditional and Conditional

3|

Variant Choices i 2-135
Variant configuration not used by topmodel 2-138
DesCriplionot e 2-138
Settings e 2-138
Command-Line Information 2-138
Recommended Settings 2-138
Data Import/Export Parameters

Model Configuration Parameters: Data Import/Export 3-2
Input e 3-4
DesCriplion it e 34
Settings e 34

TaDS o e 3-4
Programmatic USeottt 3-4
Recommended Settings 3-5
Initial state 3-6
DesCription e 3-6
SetlingS . . o e 3-6

TDS o e e e 3-6
Programmatic Use e 3-7
Recommended Settings 3-7
T e 3-8
DesCriplion e 3-8
SetlingsS . .o 3-8

TIPS o e e 3-8
Programmatic Use i i 3-8
Recommended Settings 3-9
States 3-10
DesCriptiono v e e 3-10
Setlings o e 3-10

TIPS o 3-10
Programmatic Use e 3-10
Recommended Settings 3-11
Output e 3-12
DesSCripliono 3-12
Settings o e 3-12

TPS oo e 3-12
Programmatic Use i e 3-13
Recommended Settings 3-13
Final states 3-14
DesCripliono 3-14
Settings e 3-14

Tips ..o
Programmatic Use

Recommended Settings

Format

Description

Settings
Tips,
Programmatic Use

Recommended Settings

Limit data points to last ..

Description

Settings
Tips
Programmatic Use

Recommended Settings

Decimation
Description

Settings
Tips
Programmatic Use

Recommended Settings

Save complete SimState in finalstate

Description

Settings
Tips

Dependencies

Programmatic Use

Recommended Settings

Save final operating point

DeSCriplionot e
Settings
Tips

Dependencies

Programmatic Use

Recommended Settings

Signal logging
DesSCriplionot
Settings
Tips

Dependencies

Programmatic Use

Recommended Settings

Datastores

DesCription e e e e
Settings
Tips
Programmatic Use

Recommended Settings

3-16
3-16
3-16
3-16
3-17
3-17

3-18
3-18
3-18
3-18
3-18
3-18

3-20
3-20
3-20
3-20
3-20
3-20

3-22
3-22
3-22
3-22
3-22
3-22
3-22

3-24
3-24
3-24
3-24
3-24
3-24
3-24

3-26
3-26
3-26
3-26
3-27
3-27
3-27

3-28
3-28
3-28
3-28
3-28
3-28

xvi

Contents

Log Dataset datatofile
DeSCriplionot
Setlings o e
TIPS o e e
Programmatic Use i e
Recommended Settings

Output options e
DesCription e e e e
Settings e
DS o e e
Dependenciesttt
Programmatic Use i e
Recommended Settings

Refine factor e
DesCriplion e e e
Settings e
5
DePENAENCY . . v vttt e
Programmatic Use e
Recommended Settings

Output times
DesCription e e
SetlingsS . . oo
TIDS o e
DePENAENCY . . oottt
Programmatic Use e
Recommended Settings

Single simulationoutput
DesCriplion e
Setlings . ..o
TIPS o
Programmatic Use i e
Recommended Settings

Logging intervals
DeSCripliOnot e
Setlings . ..o e
TIPS oo e
DepPendenciesttt
Programmatic Use i e
Recommended Settings

Record logged workspace data in Simulation Data Inspector
DesSCriplionot
Setlings o
TIPS o
Programmatic Use i e
Recommended Settings

Diagnostics Parameters: Compatibility

4

Model Configuration Parameters: Compatibility Diagnostics 4-2
Compatibility Diagnostics Overview 4-3
Configuration e 4-3
TIDS o e e e 4-3
Togethelponanoption 4-3
S-function upgrades needed, 4-4
DesCriplion e e 4-4
Setlings . .. 4-4
Command-Line Information 4-4
Recommended Settings e 4-4
Block behavior depends on frame status of signal 4-5
DesCriptionot e 4-5
Setlings ... o e 4-5
TIPS o 4-5
Command-Line Information 4-5
Recommended Settings 4-6
Operating point object from a different release 4-7
DesSCriplion e 4-7
Setlings o e 4-7
Command-Line Information 4-7
Recommended Settings 4-7

Diagnostics Parameters: Connectivity

d|

Model Configuration Parameters: Connectivity Diagnostics 5-2
Signal label mismatch 5-4
DesSCriplion e 5-4
Settings . ..o e 5-4
Command-Line Information 5-4
Recommended Settings 5-4
Unconnected block inputports 5-5
DesCription e 5-5
SelliNgS . . oo 5-5
Command-Line Information 5-3
Recommended Settings 5-3
Unconnected block outputports 5-6
DesCriplion e e 5-6
Setlings . ..o e 5-6
Command-Line Information 5-6
Recommended Settings 5-6

xvii

Unconnected line 0 i, 5-7
DesSCriplion v e 5-7
Setlings o e 5-7
Command-Line Information 5-7
Recommended Settings 5-7

Unspecified bus object at root Outportblock 5-8
DeSCripliont 5-8
Setlings o e 5-8
TaPS o e 5-8
Command-Line Information 5-8
Recommended Settings 5-8

Element name mismatch 5-10
DesCripliont 5-10
Settings e 5-10
TaPS . o e 5-10
Command-Line Information 5-10
Recommended Settings 5-10

Bus signal treated asvector, 5-12
DesCription e 5-12
SellingsS . . ot 5-12
TIDS o 5-12
Command-Line Information 5-12
Recommended Settings 5-13

Non-bus signals treated as bus signals 5-14
DesCription e 5-14
Setlings . ..o o e 5-14
Command-Line Information 5-14
Recommended Settings 5-14

Repairbusselections 5-16
DeSCripliOn . . . oot 5-16
Setlings o e 5-16
Command-Line Information 5-16
Recommended Settings 5-16

Context-dependentinputs 5-17
DesSCriplionot e 5-17
Setlings o e 5-17
TIPS oo e 5-17
Command-Line Information 5-17
Recommended Settings 5-17

Diagnostics Parameters: Data Validity
6
Model Configuration Parameters: Data Validity Diagnostics 6-2

xviii Contents

Data Validity Diagnostics Overview
Configuration i
TIPS oo
Togethelponanoption

Signal resolution
DesCription e e e
Settings o e
DS o e e e e
Command-Line Information
Recommended Settings

Division by singularmatrix L
DesCription e e
Settings . ..o e
TIDS o e e e
Command-Line Information
Recommended Settings

Underspecified datatypes
DesCription e
Identify and Resolve Underspecified Data Types
SetlingsS . . oo
Command-Line Information
Recommended Settings

Simulation range checking
DesCriplion e
Setlings . ..o o e
TIPS o e
Command-Line Information
Recommended Settings

String truncationchecking L.
DeSCripliOnot
Setlings o e
Command-Line Information
Recommended Settings

Wraponoverflow
DesSCriplionot e
Setlings o e
TIPS o e
Command-Line Information
Recommended Settings

Saturateonoverflow
DesCription o e e e
Settings o
TIPS o e e
Command-Line Information
Recommended Settings

Underspecified dimensions
DesCriplion e e

AN

o1 o1 11 1
NS

AN

OO0

XX

Contents

Setlings o
Command-Line Information
Recommended Settings

Inf or NaN blockoutput
DesCriptiono e e e
Settings
TIPS v e
Command-Line Information
Recommended Settings

"rt" prefix for identifiers L
DesCriplion e e
Settings e
DS oo e
Command-Line Information
Recommended Settings

Detectdowncast
DesCription e e
Setlings . ..o e
TIDS o e
Command-Line Information
Recommended Settings

Detectoverflow
DesCriplion e
Setlings . ..o o e
TIPS o
Command-Line Information
Recommended Settings

Detectunderflow
DeSCripliOn . . . oot
Setlings o e
TIPS oo e
Command-Line Information
Recommended Settings

Detect precisionloss
DesSCripliono
Setlings o e
TIPS o e
Command-Line Information
Recommended Settings

Detectloss of tunability
DesCription e e e
Settings o e
DS o e
Command-Line Information
Recommended Settings

Detect read before write
DesCription e e e

Setlings o 6-34

Command-Line Information 6-34
Recommended Settings 6-35
Detect write afterread, 6-36
DesSCripliono 6-36
Settings o e 6-36
Command-Line Information 6-36
Recommended Settings 6-37
Detect write afterwrite L. 6-38
DesCripliono e 6-38
Settings e 6-38
Command-Line Information 6-38
Recommended Settings 6-39
Multitask datastore 6-40
DesCriplion e e 6-40
Setlings . ..o 6-40
TIDS o e 6-40
Command-Line Information 6-40
Recommended Settings 6-40
Duplicate datastorenames 6-42
DesCriplion e e 6-42
Setlings . ..o o 6-42
TID .o 6-42
Command-Line Information 6-42
Recommended Settings 6-42

Diagnostics Parameters: Model Referencing

7

Model Configuration Parameters: Model Referencing Diagnostics 7-2
Model block version mismatch 7-3
DesCriptionot e 7-3
Setlings o e 7-3
TIPS o e 7-3
Command-Line Information 7-3
Recommended Settings 7-3
Port and parameter mismatch 7-5
DesSCriplion v e 7-5
Setlings o e 7-5
TIPS o e 7-5
Command-Line Information 7-5
Recommended Settings 7-5
Invalid root Inport/Outport block connection 7-7
DesCription e e 7-7
Settings e 7-7

xxi

xxii

Contents

TIPS o e 7-7

Command-Line Information 7-9
Recommended Settings 7-10
Unsupported datalogging 7-11
DesCripliono 7-11
Settings o e 7-11
TaPS o e e 7-11
Command-Line Information 7-11
Recommended Settings 7-11
No explicit final value for model arguments 7-13
DesCripliono 7-13
Settings e 7-13
Command-Line Information 7-13
Recommended Settings 7-13

Diagnostics Parameters: Sample Time

8|

Model Configuration Parameters: Sample Time Diagnostics 8-2
Source block specifies -1 sampletime 8-3
DesCriplion e 8-3
SetliNgS . . o e 8-3
TIDS o e e e 8-3
Command-Line Information 8-3
Recommended Settings 8-3
Multitask data transfer 8-5
DesCriplion e 8-5
Setlings . ..o 8-5
TaDS o e e 8-5
Command-Line Information 8-5
Recommended Settings 8-5
Single task datatransfer 8-7
DesCriptionot e 8-7
Setlings ... o e 8-7
TIPS oo 8-7
Command-Line Information 8-7
Recommended Settings 8-7
Multitask conditionally executed subsystem 8-9
DesSCriplionot 8-9
Setlings o e 8-9
TIPS o e 8-9
Command-Line Information 8-9
Recommended Settings 8-10
Tasks with equal priority, 8-11
DesCriplion oo 8-11

9

Setlings o 8-11

TIPS o 8-11
Command-Line Information 8-11
Recommended Settings 8-11
Enforce sample times specified by Signal Specification blocks 8-13
DesSCriplionot 8-13
Settings e 8-13

TaPS o e 8-13
Command-Line Information 8-13
Recommended Settings 8-13
Exported tasks rate transition, 8-15
DesCripliono 8-15
Settings . ..o e 8-15
Command-Line Information 8-15
Recommended Settings 8-15
Unspecified inheritability of sample time 8-16
DesCriplion e e 8-16
SetlingsS . . oo 8-16

TIDS o 8-16
Command-Line Information 8-16
Recommended Settings 8-16
Diagnostics Parameters

Model Configuration Parameters: Diagnostics 9-2
Algebraicloop e 9-5
DesCriplion e 9-5
Setlings . ..o o e 9-5

TIPS o e 9-5
Command-Line Information 9-6
Recommended Settings 9-6
Minimize algebraicloop L 9-7
DesCriptionot e 9-7
Setlings o e 9-7

TIPS oo e 9-7
Command-Line Information 9-7
Recommended Settings 9-7
Block priority violation 9-9
DesCriplion i 9-9
Setlings o e 9-9

TPS o 9-9
Command-Line Information 9-9
Recommended Settings 9-9

xxiii

xxiv

Contents

Min step size violation . . .
DeSCriplionot
Settings
Tips

Command-Line Information

Recommended Settings

Consecutive zero-crossings violation

DesCriptiono e e e
Settings
Tips
Dependency

Command-Line Information

Recommended Settings

Automatic solver parameter selection

DesCriplion i e e e
Settings
Tips

Command-Line Information

Recommended Settings

Extraneous discrete derivativesignals

DesCriplion e e
Settings
Tips
Dependency

Command-Line Information

Recommended Settings

State name clash
DesCription e
Settings
Tips

Command-Line Information

Recommended Settings

SimState interface checksum mismatch

DeSCripliOn . . . oot
Settings

Command-Line Information

Recommended Settings

Operating point restore interface checksum mismatch

Description

Settings

Command-Line Information

Recommended Settings

9-11
9-11
9-11
9-11
9-11
9-11

9-13
9-13
9-13
9-13
9-13
9-13
9-13

9-15
9-15
9-15
9-15
9-15
9-15

9-17
9-17
9-17
9-17
9-17
9-17
9-18

9-19
9-19
9-19
9-19
9-19
9-19

9-21
9-21
9-21
9-21
9-21

9-23
9-23
9-23
9-23
9-23

Diagnostics Parameters: Stateflow

10|

Model Configuration Parameters: Stateflow Diagnostics 10-2
Unused data, events, messages, and functions 10-4
DesCription e e 10-4
SetlingsS . . oo 10-4
TAD . 10-4
Command-Line Information 10-4
Recommended Settings 10-4
Unexpected backtracking 10-6
DesCriplion e 10-6
Setlings . ..o 10-6
TAD .o 10-6
Command-Line Information 10-6
Recommended Settings 10-6
Invalid input data access in chart initialization 10-8
DesCriptionot e 10-8
Setlings o e 10-8
TaD oo 10-8
Command-Line Information 10-8
Recommended Settings 10-8
No unconditional default transitions 10-10
DesCripliont e e 10-10
Settings o e 10-10
Command-Line Information 10-10
Recommended Settings 10-10
Transition outside natural parent 10-12
DesSCripliono i e 10-12
Settings 10-12
Command-Line Information 10-12
Recommended Settings 10-12
Undirected event broadcasts 10-13
DesSCriplionot e 10-13
Settings e 10-13
Command-Line Information 10-13
Recommended Settings 10-13
Transition action specified before condition action 10-14
DesCription e 10-14
Setlings o 10-14
Command-Line Information 10-14
Recommended Settings 10-14
Read-before-write to output in Moorechart 10-16
DesCriplion e 10-16
Settings o 10-16
Command-Line Information 10-16

Recommended Settings 10-16

Absolute time temporal value shorter than sampling period 10-17
DesSCripliono v i e 10-17
Settings e 10-17
Command-Line Information 10-17
Recommended Settings 10-17

Self transitionon leafstate 10-18
DesSCripliono vt e 10-18
Settings e 10-18
Command-Line Information 10-18
Recommended Settings 10-18

Execute-at-Initialization disabled in presence of input events 10-19
DesCription e 10-19
Setlings oo 10-19
Command-Line Information 10-19
Recommended Settings 10-19

Use of machine-parented data instead of Data Store Memory 10-21
DesCriplion 10-21
Settings o 10-21
Command-Line Information 10-21
Recommended Settings 10-21

Unreachable executionpath 10-23
DesSCripliono v e 10-23
Setlings oo e 10-24
TID . 10-24
Command-Line Information 10-24
Recommended Settings 10-24

Diagnostics Parameters: Type Conversion

11|

Model Configuration Parameters: Type Conversion Diagnostics 11-2
Unnecessary type conversionsc........ 11-3
DesCriplionot 11-3
Settings o 11-3
Command-Line Information 11-3
Recommended Settings 11-3
Vector/matrix block input conversion 11-4
DesSCriplionot 11-4
Settings 11-4
TaPS o e e 11-4
Command-Line Information 11-4
Recommended Settings i 11-4

Contents

32-bit integer to single precision float conversion 11-6

DeSCriplionot 11-6
Setlings o e 11-6
TaD Lo 11-6
Command-Line Information 11-6
Recommended Settings 11-6
Detectunderflow 11-7
DesSCriplionot 11-7
Settings o 11-7
TaPS o 11-7
DEPENAENCY . . . ottt et e 11-7
Command-Line Information 11-7
Recommended Settings 11-7
Detect precisionloss 11-9
DesSCripliono 11-9
Settings e 11-9
TaPS .o e 11-9
DePENAENCY . . vttt e 11-9
Command-Line Information 11-9
Recommended Settings 11-9
Detectoverflow 11-11
DesCription i e 11-11
Setlings o 11-11
1 11-11
DePENAENCY . . ottt et 11-11
Command-Line Information 11-11
Recommended Settings 11-11

Model Referencing Parameters

12

Model Configuration Parameters: Model Referencing 12-2
Rebuild e 12-4
DesCripliono e 12-4
Setlings . ..o 12-4
Definitions 12-5
TIPS o 12-6
DEPENAENCY . . . vttt e et e e e 12-7
Command-Line Information 12-7
Recommended Settings 12-7
Compatibility Considerations, 12-7
Never rebuild diagnostic 12-9
DesCriptionot e 12-9
Setlings o 12-9
1 T 12-9
DEPENAENCY . . . v vttt 12-9
Command-Line Information 12-9

xxvii

xxviii

Contents

Recommended Settings . . .

Enable parallel model reference builds

Description

Settings
Dependency
Tip ..o

Command-Line Information

Recommended Settings . . .

MATIAB worker initialization forbuilds

Description

Settings

Limitation

Dependency

Command-Line Information

Recommended Settings . . .

Enable strict scheduling checks for referenced models

Description

Settings

Command-Line Information

Total number of instances allowed per topmodel

DesCriplion
Settings

Command-Line Information

Recommended Settings . . .

Pass fixed-size scalar root inputs by value for code generation

DesSCripliono vt e e
Settings
Tips ...

Command-Line Information

Recommended Settings . . .

Minimize algebraic loop occurrences

DesSCriplionot e e
Settings
Tips ...

Command-Line Information

Recommended Settings . . .

Propagate all signal labels out of the model

DesCription e
Settings
Tips ...

Command-Line Information

Recommended Settings . . .

Use local solver when referencingmodel

DesCriplion e e
Settings
Tips ...

Command-Line Information

12-10

12-11
12-11
12-11
12-11
12-11
12-11
12-11

12-13
12-13
12-13
12-13
12-13
12-13
12-13

12-15
12-15
12-15
12-15

12-16
12-16
12-16
12-16
12-16

12-18
12-18
12-18
12-18
12-18
12-19

12-20
12-20
12-20
12-20
12-20
12-20

12-22
12-22
12-22
12-22
12-23
12-23

12-25
12-25
12-25
12-25
12-25

Recommended Settings 12-25

Propagate sizes of variable-size signals 12-27
DesCripliono e 12-27
Settings o e 12-27
Command-Line Information 12-28
Recommended Settings 12-28

Model dependencies 12-29
Descripliono i e 12-29
Settings e 12-29
TaPS .o e e 12-30
Command-Line Information 12-30
Recommended Settings 12-30

Perform consistency check on parallelpool 12-31
DesCription e 12-31
Setlings o 12-31
Command-Line Information 12-31

Simulation Target Parameters

13|

Model Configuration Parameters: Simulation Target 13-2
Language e 13-6
DesCriplion e 13-6
Setlings i 13-6
Command-Line Information 13-6
Recommended Settings 13-7
GPU acceleration 13-8
DesCriptionot e 13-8
Setlings o e 13-8
Command-Line Information 13-8
Recommended Settings 13-8
Enable custom code analysis 13-9
DesSCripliono 13-9
Settings o e 13-9
Command-Line Information 13-9
Recommended Settings 13-9
Additional code 13-10
Descriplionot e 13-10
Settings e 13-10
Command-Line Information 13-10
Recommended Settings 13-10
Include headers e 13-11
DesCripliono e 13-11
Settings e 13-11

xxix

XXX

Contents

Tips . ..

Command-Line Information
Recommended Settings

Initialize code
DesCription e e

Settings

Tip

Command-Line Information
Recommended Settings

Terminate code e
DesCripliono e

Settings

Tip

Command-Line Information
Recommended Settings

Include directories
DesCriplion e

Settings

Command-Line Information
Recommended Settings

Source files

DesCriplion

Settings

Limitation

Tip

Command-Line Information
Recommended Settings

Libraries . .

DesSCripliono v e e

Settings

Limitation

Tips . ..

Command-Line Information
Recommended Settings

Defines

DesCriplionot e e

Settings

Command-Line Information
Recommended Settings

Compilerflags e
DesCription e e

Settings

Command-Line Information
Recommended Settings

Linker flags

DesCriplion e e

Settings

13-11
13-11
13-11

13-12
13-12
13-12
13-12
13-12
13-12

13-13
13-13
13-13
13-13
13-13
13-13

13-14
13-14
13-14
13-14
13-14

13-16
13-16
13-16
13-16
13-16
13-16
13-16

13-17
13-17
13-17
13-17
13-17
13-17
13-17

13-19
13-19
13-19
13-19
13-19

13-20
13-20
13-20
13-20
13-20

13-21
13-21
13-21

Command-Line Information 13-21

Recommended Settings 13-21
Deterministic functions 13-22
DesCripliono e 13-22
Settings e 13-22
Command-Line Information 13-22
Recommended Settings 13-22
Specify by function 13-24
Descripliono e 13-24
Settings 13-24
Command-Line Information 13-24
Recommended Settings 13-24
Default function arraylayout 13-26
DesCriplion e 13-26
Setlings o 13-26
Command-Line Information 13-26
Recommended Settings 13-26
Undefined function and variable handling 13-28
DesCriplion 13-28
Setlings o 13-28
Command-Line Information 13-28
Recommended Settings 13-29
Simulate custom code in a separate process 13-30
DesSCripliono v i e 13-30
Settings o 13-30
Command-Line Information 13-30
Recommended Settings 13-30
Enable global variables as function interfaces 13-32
DesSCriplionot e 13-32
Setlings o 13-32
Command-Line Information 13-32
Recommended Settings 13-32
Exception by function 13-33
DesCripliono e 13-33
Settings e 13-33
Command-Line Information 13-33
Example e 13-33
Recommended Settings 13-34

Solver Parameters

14

Solver Pane 14-2

xxxi

Start time 14-6

DeSCriplionot 14-6
Setlings o e 14-6
Programmatic Use i e 14-6
Stop time e 14-7
DesSCriplionot 14-7
Settings o e 14-7
Programmatic Use e 14-7
T P . o o e 14-8
DesCripliono 14-8
Settings 14-8
Dependenciest e 14-8
Programmatic Use0t i 14-9
SOIVeT . . . e 14-10
DesCriplion 14-10
Setlings o 14-10
1 14-13
Dependencies 14-13
Command-Line Information 14-15
Maxstep size 14-16
DesCriplion 14-16
Settings oo 14-16
1 14-16
Dependencies 14-16
ProgrammaticUse e 14-16
Recommended Settings 14-17
Initial stepsize 14-18
DesSCripliono v i e e 14-18
Setlings o 14-18
1 3 14-18
Dependenciesttt e 14-18
ProgrammaticUse e 14-18
Recommended Settings 14-18
Minstepsize e 14-20
DesCripliont 14-20
Settings o e 14-20
TIPS o e 14-20
Dependenciesttt 14-20
Programmatic Use 14-20
Recommended Settings 14-20
Relative tolerance 14-22
DesCripliono e 14-22
Settings o e 14-22
TaPS o e 14-22
Dependenciesttt e 14-22
Programmatic Use e 14-22
Recommended Settings 14-23

xxxii Contents

Absolute tolerance 14-24

DesCripliono e e 14-24
Settings o e 14-24
TIPS oo e 14-24
Dependenciesttt 14-25
ProgrammaticUse e 14-25
Recommended Settings 14-25
Shape preservation 14-26
DesSCripliono e 14-26
Settings o e 14-26
TaPS o e e 14-26
Dependenciesttt 14-26
Programmatic Use 14-26
Recommended Settings 14-26
Maximumorder 14-28
Description e 14-28
Settings e 14-28
TIPS .o e e 14-28
Dependencies 14-28
Programmatic Use 14-28
Recommended Settings 14-29
Solverresetmethod 14-30
DesCription 14-30
Setlings . ..o 14-30
1 14-30
Dependencies 14-30
ProgrammaticUse i 14-30
Recommended Settings 14-30
Number of consecutive minsteps 14-32
DesCriplion e 14-32
Setlings o 14-32
Dependencies 14-32
ProgrammaticUse i e 14-32
Recommended Settings 14-32
Solver Jacobian Method 14-34
DesSCriplionot e e 14-34
Settings o 14-34
1 3 14-34
Dependenciesttt e 14-34
ProgrammaticUse e 14-34
Recommended Settings 14-34
DaessCcmode 14-36
DesSCriplionot e e 14-36
Settings o e 14-36
TIPS ot e 14-36
Dependenciesttt 14-36
ProgrammaticUse i 14-36
Recommended Settings 14-37

xxxiii

xXxxiv

Contents

Enable zero-crossing detection for fixed-step solver

DesSCriplionot e
Settings o e
Dependenciesttt
ProgrammaticUse
Maximum number of bracketing iterations
DesCription i e e
Settings
Dependenciesttt
Programmatic Use i i
Maximum number of zero-crossings perstep
DesCription e
Settings e
Dependencies
ProgrammaticUse
Allow multiple tasks to access inputs and outputs
DesCription e
Setlings o
Command-Line Information
Recommended Settings
Treat each discrete rate as aseparatetask
DesCription
Setlings o
TIDS o e
DEPENAENCY . . ottt et e
Command-Line Information
Recommended Settings
Automatically handle rate transition for data transfer
DesCripliono vt e
Setlings oo
TIPS ot e e
ProgrammaticUse e
Recommended Settings
Deterministic data transfer
DesSCripliono e e
Dependenciesttt
ProgrammaticUse i e
Recommended Settings
Higher priority value indicates higher task priority
DesCription e e
Settings o e
Programmatic Use i i
Recommended Settings
Zero-crossingcontrol e
DesCription e e e
Settings
TIDS o e e e

14-38
14-38
14-38
14-38
14-38

14-39
14-39
14-39
14-39
14-39

14-40
14-40
14-40
14-40
14-40

14-41
14-41
14-41
14-41
14-41

14-42
14-42
14-42
14-42
14-42
14-42
14-43

14-44
14-44
14-44
14-44
14-44
14-44

14-46
14-46
14-46
14-46
14-47

14-48
14-48
14-48
14-48
14-48

14-49
14-49
14-49
14-49

Dependenciesttt
ProgrammaticUse
Recommended Settings

Time tolerance
DesCription
Settings e
DS o e e e e e
Dependenciesttt
Programmatic Use i i i
Recommended Settings

Number of consecutive zero crossings
DesCripliono e
Settings e
TIDS o e e e e
Dependenciest
Programmatic Use
Recommended Settings

Algorithm
DesCription e
Setlings
TIDS o e e e e
Dependencies
ProgrammaticUse i
Recommended Settings

Signal threshold
DesCriplion
Setlings o
TIDS o e e
Dependencies
ProgrammaticUse i e
Recommended Settings

Periodic sample time constraint
DesSCripliono v i e e
Settings o
TIPS o e
Dependenciesttt
ProgrammaticUse e
Recommended Settings

Fixed-step size (fundamental sample time)
DesSCriplionot e e
Settings o e
Dependenciesttt
Programmatic Use e
Recommended Settings

Sample time properties
DesCription e e
Settings e
TIDS o e e e e e

Dependenciesttt 14-64

ProgrammaticUse 14-64
Extrapolationorder 14-65
DesSCripliono i i e 14-65
Settings e 14-65
TAD Lo 14-65
Dependenciesttt 14-65
Programmatic Use 14-65
Recommended Settings 14-65
Number of Newton's iterations 14-67
Descripliono e 14-67
Settings e 14-67
Dependencies 14-67
Programmatic Useot 14-67
Recommended Settings 14-67
Allow tasks to execute concurrentlyontarget 14-69
DesCriplion e 14-69
Setlings o 14-69
ProgrammaticUse 14-69
Recommended Settings 14-70
Auto scale absolute tolerance 14-71
DesCriplion 14-71
Setlings o 14-71
ProgrammaticUse i 14-71
Recommended Settings 14-71
Integrationmethod 14-73
DesSCriplionot e e 14-73
Setlings o 14-73
Command-Line Information 14-73
Recommended Settings 14-73

Hardware Implementation Parameters

15

Hardware Implementation Pane 15-2
Hardware board 15-5
Settings o e 15-5
TaPS o e e 15-5
Dependenciesttt 15-5
Command-Line Information 15-5
Recommended Settings 15-6
SEE AISO ... 15-6
Code Generation system targetfile 15-7

XXXVi Contents

Device vendor
Setlings o
TIPS o e
Dependenciesttt
Command-Line Information
Recommended Settings
SEE AISO . . i e

Device type
Settings e
DS o e e e e
Dependenciesttt e
Command-Line Information
Recommended Settings
SEEAISO

Numberofbits:char
DesCriptiono e
Settings e
LD o e
Dependenciest
Command-Line Information
Recommended Settings
SEE ALSO ..t

Number of bits: short,
DesCription e
Setlings o
TD o
Dependencies
Command-Line Information
Recommended Settings
SEE AISO ..t

Numberof bits:int
DesCriplion e
Setlings o
TD o
Dependencies
Command-Line Information
Recommended Settings
SEE AISO ...t

Numberofbits:long
DesSCriplionot e e
Settings o
TaD o e
Dependenciesttt e
Command-Line Information
Recommended Settings
See AlSO

Number of bits:longlong
DesSCriplionot e e
Settings o e

—

-
1 1 1 1 1

—
U'IU'IUI?'IUIUIUI
oo ®

-

xxxvii

xxxviii

Contents

TIPS ot e
Dependenciesttt
Command-Line Information
Recommended Settings
SEe AlSO

Numberof bits: float
DesCription e
Settings e
Command-Line Information
Recommended Settings
SEE AISO . . i

Number of bits: double
DesCription e e
Settings
Command-Line Information
Recommended Settings
SEE ALSO ..t

Number of bits: native
DesCription e
Settings
TD o
Dependencies
Command-Line Information
Recommended Settings
SEE AISO . .ot e

Number of bits: pointer
DesCription e
Settings o
Dependencies
Command-Line Information
Recommended Settings
SEE AISO . ..t

Numberof bits: size t
DesCripliono vt e e
Settings oo
Dependenciesttt e
Command-Line Information
Recommended Settings
See AlSO

Numberof bits: ptrdiff t
DesSCripliono vt e e
Settings e
Dependenciesttt
Command-Line Information
Recommended Settings
SEEAISO ...

Largest atomic size: integer
DesCription e e

Settings o 15-41

TaD Lo 15-41
Dependenciesttt 15-41
Command-Line Information 15-41
Recommended Settings 15-42
SEEAISO ... 15-42
Largest atomic size: floating-point 15-43
DesSCripliono i e e 15-43
Settings e 15-43
TAD Lo 15-43
Dependenciesttt 15-43
Command-Line Information 15-43
Recommended Settings 15-43
SEEAISO 15-44
Byteordering e 15-45
DesScriplionot e 15-45
Settings 15-45
Dependencies 15-45
Command-Line Information 15-45
Recommended Settings 15-45
SEE ALSO ..t e 15-46
Signed integer divisionroundsto 15-47
DesCription e 15-47
Setlings o 15-47
1 15-47
DePENAENCY . . ottt et e 15-48
Command-Line Information 15-48
Recommended settings 0 i 15-48
SEE AISO ..ot 15-48
Shift right on a signed integer as arithmetic shift 15-49
DesCriplion 15-49
Settings oo 15-49
1 15-49
DEePENAENCY . . .ttt et e e 15-49
Command-Line Information 15-49
Recommended settings 15-49
SEE AISO ..ot 15-50
Supportlonglong 15-51
DesSCriplionot 15-51
Setlings o 15-51
1 3 15-51
Dependenciesttt e 15-51
Command-Line Information 15-51
Recommended Settings 15-51
SEE AISO . ..t 15-52

xxxix

x1

Signal Properties Dialog Box

16|

Data Transfer Options for Concurrent Execution 16-2
Specify data transfersettings 16-2
Data transfer handlingoption 16-2
Extrapolation method (continuous-time signals) 16-2
Initial condition 16-2

17|

Font Styles for Models i 17-2
Font Styles OVerviewttt 17-2

18|

Mask Editor Overview 18-2
Parameters & Dialog Pane i 18-2
Code Panet 18-16
IconPane e 18-19
Constraints 18-27
Additional Options 18-28

Dialog Control Operations 18-30
Moving dialog controls in the Dialogbox 18-30
Cut, Copy, and Paste Controls 18-30
Delete nodes 18-31
Error Displaycov ittt 18-31

Specify Data Types Using DataTypeStr Parameter 18-33
Associate Data Types to Edit Parameter 18-33
View DataTypeStr Programmatically 18-37

Designa Mask DialogBox 18-39

Concurrent Execution Window

19]

Concurrent Execution Window: Main Pane 19-2
Concurrent Execution Window Overview, 19-2
Enable explicit model partitioning for concurrent behavior 19-3

Contents

Data TransferPane
Data Transfer Pane OVerviewttt
Periodic signals i
Continuous signals i e
Extrapolationmethod
Automatically handle rate transition for data transfer

CPUPANe e
CPU Pane OVEeIVIEW . . . v ot oot e e et e e e e e e e
NamE . . e

Hardware Node Pane i
Hardware Node Pane Overview
NaAME . . e e
Clock Frequency [MHZ] i e
{70 (o)

Periodic Pane e
Periodic Pane OVerviewc it
NaAME . . e
Periodic Triggero oottt e e
{70 (o)
Template

Task Pane e
Task Pane OVeIVIEWottt e e e
NaAME . . e
Period
{70 (o)

Interrupt Pane e
Interrupt Pane Overviewt
Name
Color . ..o
Aperiodic triggersource
Signal number [2,SIGRTMAX-SIGRTMIN-1]
Eventname

System Tasks Pane i,
System Tasks Pane Overviewiiiiiinennnnnn.

System Task Pane i
System Task Pane Overviewc.c.iiiiininennnn...
Name . ..
Period ...
ColoT . ..

System Interrupt Pane
System Interrupt Pane Overview
Name

Profile Report Pane
Profile Report Pane Overviewuiiiinnn..n.
Numberoftimesteps

Simulink Simulation Stepper

20

Simulation Stepping Options 20-2
Simulation Stepping Options Overview 20-2
Enable stepping back 20-3
Maximum number of saved back steps, 20-3
Interval between stored backsteps 20-4
Move back/forward by 20-4

Variant Manager for Simulink

21

Variant Manager for Simulink 21-2
Variant Manager i e 21-2
Install Variant Manager for Simulink 21-3
Open Variant Manageroi ittt et 21-4
Explore Variant Manager Window 21-4
Manage Variant Elements 21-5
Reduce a Variant Model i 21-9
Analyze Variant Configurations 21-9
Iconsin Variant Managert 21-10
Access the Variant Manager Functionality Programmatically 21-13
Limitations 21-14

Math and Data Types
22

Mathand DataTypes Pane iiuuio.. 22-2

Simulation behavior for denormal numbers 22-3
DesCription e 22-3
Setlings . ..o o e 22-3
TIPS o 22-3
Command-Line Information 22-3
DEPENAENCY . . .ottt e e e 22-3

Default for underspecified datatype 22-4
DesSCripliono 22-4
Setlings o e 22-4
TIPS oo e e 22-4
Command-Line Information 224
Recommended Settings 22-4

Use division for fixed-point net slope computation 22-6
DesCripliono 22-6
Settings o e 22-6
TaPS o e 22-6

xlii Contents

DEPENAENCY . . o ittt et e e 22-7

Command-Line Information 22-7
Recommended Settings 22-7
Gain parameters inherit a built-in integer type that is lossless 22-8
DesSCriplionot 22-8
Settings o e 22-8
TaPS oo 22-8
Dependenciesttt 22-8
Command-Line Information 22-8
Recommended Settings 22-9

Use floating-point multiplication to handle net slope corrections 22-10

DesScriplionot e 22-10
Settings e 22-10
TaPS .o e e 22-10
Dependencies 22-10
Command-Line Information 22-10
Recommended Settings 22-10
Inherit floating-point output type smaller than single precision 22-12
DesCription e 22-12
Setlings o 22-12
TaDS e 22-13
Dependencies 22-13
Command-Line Information 22-13
Recommended Settings 22-13
Application lifespan (days) 22-14
DesCriplion 22-14
Setlings o e 22-14
TaDS e 22-14
Command-Line Information 22-15
Recommended Settings 22-15
Use algorithms optimized for row-major array layout 22-16
DesSCriplionot e e 22-16
Settings o 22-16
TADS e e 22-17
Command-Line Information 22-17
Recommended Settings 22-17

Model Parameter Configuration Dialog Box

23

Model Parameter Configuration DialogBox 23-2
Source list 23-2
Refresh list e 23-3
Addtotable e 23-3
N W o e 23-3
Storage Class 23-3
Storage type qualifier 23-3

xliii

Model Advisor Parameters

24

Model Configuration Parameters: Model Advisor 24-2
Model Advisor Pane Overviewc.iiiiirinnnennnnn. 24-2
Togethelponanoption 24-2

Model Advisor configurationfile 24-3
DesCriplion e 24-3
Setlings . .ot e 24-3
TIDS o 24-3
Command-Line Information 24-3
Recommended Settings 24-4

Show Model Advisor edit-timechecks 24-5
DesCriplion e 24-5
Setlings . ..o e 24-5
TaD o e 24-5
Command-Line Information 24-5
Recommended Settings 24-6

xliv Contents

Configuration Parameters Dialog Box

1 Configuration Parameters Dialog Box

Model Configuration Pane

1-2

In this section...

“Model Configuration Overview” on page 1-2
“Name” on page 1-2
“Description” on page 1-2

“Configuration Parameters” on page 1-3

Model Configuration Overview

View or edit the name and description of your configuration set.
In the Model Explorer you can edit the name and description of your configuration sets.

In the Model Explorer or Simulink Preferences window you can edit the description of your template
configuration set, Model Configuration Preferences. Go to the Model Configuration Preferences to
edit the template Configuration Parameters to be used as defaults for new models.

When editing the Model Configuration preferences, you can click Restore to Default Preferences
to restore the default configuration settings for creating new models. These underlying defaults
cannot be changed.

For more information about configuration sets, see “Manage Configuration Sets for a Model”.

Name

Specify the name of your configuration set.
Settings

Default: Configuration (for Active configuration set) or Configuration Preferences (for
default configuration set).

Edit the name of your configuration set.

In the Model Configuration Preferences, the name of the default configuration is always
Configuration Preferences, and cannot be changed.

Description

Specify a description of your configuration set.
Settings
No Default

Enter text to describe your configuration set.

Model Configuration Pane

Configuration Parameters

No further help documentation is available for this parameter.

1-3

Simulink Configuration Parameters:
Advanced

2 Ssimulink Configuration Parameters: Advanced

Test hardware is the same as production hardware

2-2

Description
Specify whether the test hardware differs from the production hardware.

Category: Hardware Implementation

Settings
Default: On

|7On

Specifies that the hardware used to test the code generated from the model is the same as the
production hardware, or has the same characteristics.

™ off

Specifies that the hardware used to test the code generated from the model has different
characteristics than the production hardware.

Tip

You can generate code that runs on the test hardware but behaves as if it had been generated for and
executed on the deployment hardware.

Dependency

Enables test hardware parameters.

Recommended settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 15-2

Test device vendor and type

Test device vendor and type

Description

Select the manufacturer and type of the hardware to use to test the code generated from the model.

Category: Hardware Implementation

Settings

Default: Intel, x86—64 (Windows64)

AMD

ARM Compatible
Altera

Analog Devices
Apple

Atmel

Freescale
Infineon

Intel

Microchip

NXP

Renesas
STMicroelectronics
Texas Instruments
ASIC/FPGA

Custom Processor

AMDE® options:

Athlon 64
K5/K6/Athlon
x86—32 (Windows 32)
x86-64 (Linux 64)
x86—64 (mac0S)
x86—64 (Windows64)

ARME® options:

ARM 10
ARM 11
ARM 7

2-3

2 Ssimulink Configuration Parameters: Advanced

2-4

* ARM 8

« ARM 9

* ARM Cortex-A

* ARM Cortex-M

* ARM Cortex-R

* ARM Cortex

* ARM 64-bit (LP64)
* ARM 64-bit (LLP64)

Altera® options:
* SoC (ARM CortexA)

Analog Devices® options:

* ADSP-CM40x (ARM Cortex-M)
* Blackfin

* SHARC

* TigerSHARC

Apple options:
* ARM64
Atmel® options:

*+ AVR
* AVR (32-bit)
* AVR (8-bit)

Freescale™ options:

e 32-bit PowerPC
* 68332

* ©08HCO8

* 68HC11

* ColdFire

* DSP563xx (16-bit mode)
+ HC(S)12

¢ MPC52xx

+ MPC5500

* MPC55xx

* MPC5xx

* MPC7xxx

* MPC82xx

Test device vendor and type

* MPC83xx
* MPC85xx
* MPC86xx
* MPC8xx

+ S08

e S12x

* StarCore

Infineon® options:
* (Cl6x, XCléx
* TriCore
Intel® options:

* Xx86-32
+ x86-64
+ x86-64
+ x86-64

Windows32)
Linux 64)
mac0S)

Windows64)

—_—~ o~ o~ o~

Microchip options:

+ PIC18
+ dsPIC

NXP options:

e Cortex-MO/MO+
e Cortex—M3
e Cortex—M4

Renesas® options:

+ M16C

+ M32C

* R8C/Tiny
* RH850

* RL78

* RX

* RZ

* SH-2/3/4
+ V850

STMicroelectronics®:

* ST10/Superl0

Texas Instruments™ options:

2-5

2 Simulink Configuration Parameters: Advanced

* (2000

* (5000

+ (6000

* MSP430

* Stellaris Cortex-M3
o TMS470

* TMS570 Cortex—R4

ASIC/FPGA options:
* ASIC/FPGA

Tips
* Before you select the device type, select the device vendor.

* Selecting a device type specifies the hardware device to define system constraints:

* Default hardware properties appear as the initial values.
* You cannot change parameters with only one possible value.
* Parameters with more than one possible value provide a list of valid values.

The following table lists values for each device type.

AMD
Athlon 64 |8 |16 |3 |64 |64 |64 64 64 |64 Cha |[None |Little |Zero v O
2 r Endia
n
K5/K6/ 8 |16 |3 |32 |64 (32 32 32 |32 Cha |None |Little |Zero v O
Athlon 2 r Endia
n
x86—32 8 (16 |3 [32 |64 |32 32 32 (32 Cha |Float |Little |Zero v O
(Windows3 2 r Endia
2) n

Test device vendor and type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
x86—64 8 |16 |3 |64 |64 |64 |64 |64 |64 Cha |Float |Little |Zero v O
(Linux 2 r Endia
64) n
x86—64 8 |16 |3 |64 |64 |64 |64 |64 |64 Cha |Float |Little |Zero v O
(mac0S) 2 r Endia
n
x86—64 8 |16 |3 |32 |64 [64 |64 |64 |64 Cha |Float |Little |Zero v O
(Windows6 2 r Endia
4) n
ARM Compatible
ARM 8 |16 |3 |32 |64 |32 |32 |32 |32 Lon |Float |Little |Zero v O
7/8/9/10 2 g Endia
n
ARM 11 8 |16 |3 (32|64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
ARM 8 |16 |3 |32 |64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
Cortex 2 g le Endia
n
ARM 64 - 8 |16 |3 (64 |64 |64 64 64 |64 Lon |Doub |Little |Zero v v
bit 2 g le Endia
(LP64) n
ARM 64 - 8 |16 |3 |32 (64 [64 |64 |64 |64 Lon |Doub |Little |Zero v v/
bit 2 g le Endia
(LLP64) n
Altera
SoC (ARM |8 (16 (3 |32 |64 |32 (32 |32 |32 Cha |None |Little |Zero v O
Cortex A) 2 r Endia
n
Analog Devices
ADSP- 8 (16 |3 |32 |64 |32 32 32 |32 Lon |[Doub |Little |Zero v O
CM40x (ARM 2 g le Endia
Cortex-M) n

2-7

Simulink Configuration Parameters: Advanced

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
Blackfin |8 (16 (3 |32 |64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
SHARC 32 |32 |3 (32 (64 (32 |32 |32 (32 Lon |Doub |Big Zero v O
2 g le Endia
n
TigerSHAR (32 |32 |3 (32 |64 |32 32 32 |32 Lon |Doub |Little |Zero v O
C 2 g le Endia
n
Apple
ARM64 8 (16 |3 |64 |64 |64 |64 |64 |64 Cha |Float |Little |Zero v O
2 r Endia
n
Atmel
AVR 8 |16 |1 |32 |64 |8 16 16 |16 Cha |None |Little |Zero v O
6 r Endia
n
AVR (32- (8 (16 |3 |32 |64 |32 32 32 (32 Cha |[None |Little |Zero v/ O
bit) 2 r Endia
n
AVR (8- 8 (16 |1 |32 |64 |16 16 16 |16 Cha |[None |Little |Zero v O
bit) 6 r Endia
n
Freescale
32-bit 8 |16 |3 |32 |64 |32 (32 |32 |32 Lon |Doub |Big Zero v O
PowerPC 2 g le Endia
n
68332 8 |16 |3 |32 |64 |32 |32 |32 |32 Cha |None |Big Zero v O
2 r Endia
n
68HCO8 8 |16 |1 |32 |64 |8 8 16 |8 Cha |None |Big Zero v O
6 r Endia
n

2-8

Test device vendor and type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
68HC11 8 (16 |1 |32 |64 |8 8 16 |16 Cha |None |Big Zero v O
6 r Endia
n
ColdFire |8 (16 (3 |32 |64 |32 |32 32 |32 Cha |None |Big Zero v O
2 r Endia
n
DSP563xx |8 (16 |1 |32 (64 |16 16 16 |16 Cha |None |Little |Zero v O
(16-bit 6 r Endia
mode) n
DSP5685x |8 |16 (1 (32 |64 |16 16 |16 |16 Cha |Float |Little |Zero v O
6 r Endia
n
HC(S)12 |8 (16 |1 |32 |64 |16 16 |16 |16 Cha |[None |Big Zero v O
6 r Endia
n
MPC52xx, (8 |16 |3 |32 ({64 |32 32 32 |32 Lon [None |Big Zero v O
MPC5500, 2 g Endia
MPC55xx, n
MPC5xx,
PC5xx,
MPC7xxXx,
MPC82xx,
MPC83xx,
MPC86xXx,
MPC8xx
MPC85xx |8 |16 |3 |32 |64 |32 32 32 |32 Lon |Doub |Big Zero v O
2 g le Endia
n
S08 8 |16 |1 |32 |64 |16 16 16 |16 Cha |[None |Big Zero v/ O
6 r Endia
n
S12x 8 |16 |1 (32 |64 |16 16 16 |16 Cha |[None |Big Zero v/ O
6 r Endia
n

2-9

Simulink Configuration Parameters: Advanced

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
StarCore |8 (16 (3 |32 |64 |32 (32 |32 |32 Cha |None |Little |Zero v O
2 r Endia
n
Infineon
Cl6x, 8 |16 |1 |32 |64 |16 16 16 |16 Cha |None |Little |Zero v O
XC16x 6 r Endia
n
TriCore |8 (16 |3 |32 |64 |32 32 32 (32 Cha |[None |Little |Zero v/ O
2 r Endia
n
Intel
x86-32 8 |16 |3 (32|64 |32 (32 |32 |32 Cha |Float |Little |Zero v O
(Windows3 2 r Endia
2) n
x86—64 8 |16 |3 |64 |64 |64 |64 |64 |64 Cha |Float |Little |Zero v O
(Linux 2 r Endia
64) n
x86—64 8 |16 |3 |64 |64 [64 |64 |64 |64 Cha |Float |Little |Zero v O
(mac0S) 2 r Endia
n
x86—64 8 |16 |3 |32 (64 [64 |64 |64 |64 Cha |Float |Little |Zero v O
(Windows6 2 r Endia
4) n
Microchip
PIC18 8 (16 |1 |32 |64 |8 8 24 |24 Cha |None |Little |Zero 4 O
6 r Endia
n
dsPIC 8 (16 |1 |32 |64 |16 16 16 |16 Cha |[None |Little |Zero v/ O
6 r Endia
n
NXP

2-10

Test device vendor and type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
Cortex— |8 (16 (3 |32 |64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
MO/MO+ 2 g |le Endia
n
Cortex-M3|8 (16 (3 |32 |64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
Cortex-M4 |8 (16 |3 |32 (64 |32 32 32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
Renesas
M16C 8 |16 |1 |32 (64 |16 |16 |16 |16 Cha |None |Little |Zero v O
6 r Endia
n
M32C 8 |16 |1 |32 (64 |16 |16 |16 |16 Cha |None |Little |Zero v O
6 r Endia
n
R8C/Tiny |8 [16 |1 |32 (64 |16 16 16 |16 Cha |None |Little |Zero v O
6 r Endia
n
RH850 8 |16 |3 |32 |64 |32 32 32 (32 Cha |[None |Little |Zero v/ O
2 r Endia
n
RL78 8 (16 |1 |32 |64 |16 16 16 |16 Cha |[None |Little |Zero v O
6 r Endia
n
RX 8 |16 |3 (32|64 |32 (32 |32 |32 Cha |None |Little |Zero v O
2 r Endia
n
Rz 8 |16 |3 |32 |64 |32 32 32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
SH-2/3/4 |8 (16 (3 |32 |64 |32 (32 |32 |32 Cha |None |Big Zero v O
2 r Endia
n

2-11

2 Ssimulink Configuration Parameters: Advanced

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
V850 8 |16 |3 |32 |64 |32 |32 32 |32 Cha |None |Little |Zero v O
2 r Endia
n
STMicroelectronics
ST10/ 8 |16 |1 |32 |64 |16 16 16 |16 Cha |None |Little |Zero v O
Superl0 6 r Endia
n
Texas Instruments
C2000 16 |16 |1 (32 |64 |16 |32 16 |16 Int |None |Little |Zero v O
6 Endia
n
C5000 16 |16 |1 (32 |64 |16 16 |16 |16 Int |None |Big Zero v O
6 Endia
n
C6000 8 (16 |3 |40 |64 |32 |32 32 (32 Int |None |Little |Zero v O
2 Endia
n
MSP430 8 |16 |1 |32 |64 |16 16 |16 |16 Cha |None |Little |Zero v O
6 r Endia
n
Stellaris |8 (16 (3 (32 |6 32 |32 32 |32 Lon |Doub |Little |Zero v O
Cortex—M3 2 g le Endia
n
TMS470 8 |16 |3 |32 |64 |32 |32 32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
TMS570 8 |16 |3 |32 |64 |32 |32 32 (32 Lon |Doub |Big Zero v O
Cortex—R4 2 g le Endia
n
ASIC/FPGA
ASIC/FPGA INA|NA |N [NA[NA [NA |NA |NA |[NA NA |[NA |NA NA NA NA
A

» If your hardware does not match one of the listed types, select Custom.

2-12

Test device vendor and type

Dependencies

The Device vendor and Device type fields share the command-line parameter
TargetHWDeviceType. When specifying this parameter at the command line, separate the device
vendor and device type values by using the characters ->. For example: 'Intel->x86-64

(Linux 64)"'.

If you have a Simulink Coder™ license and you want to add Device vendor and Device type
values to the default set, see “Register New Hardware Devices” (Simulink Coder).

The Device vendor and Device type parameter values reflect available device support for the
selected hardware board.

Menu options that are available depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

Number of bits:
Number of bits:
Number of bits:
Number of bits:
Number of bits:
Number of bits:
Number of bits:
Number of bits:
Number of bits:
Number of bits:

Number of bits:

char
short
int

long
long long
float
double
native
pointer
size t
ptrdiff t

Largest atomic size: integer

Largest atomic size: floating-point

Byte ordering

Signed integer division rounds to

Shift right on a signed integer as arithmetic shift

Support long long

Whether you can modify the value of a device-specific parameter varies according to device type.

Command-Line Information
Parameter: TargetHWDeviceType

Type: character vector

Value: any valid value (see tips)

Default: ' Intel->x86-64 (Windows64)'

2-13

2 Ssimulink Configuration Parameters: Advanced

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. “Hardware board” on page 15-5

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 15-2

2-14

Number of bits: char

Number of bits: char

Description
Describe the character bit length for the hardware that you use to test code.

Category: Hardware Implementation

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter an integer value between 8 and 32.
Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerChar
Type: integer

Value: any valid value

Default: 8

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

2-15

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-16

Number of bits: short

Number of bits: short

Description
Describe the data bit length for the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: 16
Minimum: 8
Maximum: 32

Enter an integer value between 8 and 32.
Tip
All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerShort
Type: integer

Value: any valid value

Default: 16

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

2-17

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-18

Number of bits: int

Number of bits: int

Description
Describe the data integer bit length of the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: 32
Minimum: 8
Maximum: 32

Enter an integer value between 8 and 32.
Tip
All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerInt

Type: integer

Value: any valid value

Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

2-19

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-20

Number of bits: long

Number of bits: long

Description
Describe the data bit lengths for the hardware that you use to test code.

Category: Hardware Implementation

Settings

Default: 32

Minimum: 32

Maximum: 64

Enter an integer value between 32 and 64.

Tip

All values must be a multiple of 8 and between 32 and 64.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerLong
Type: integer

Value: any valid value

Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

2-21

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-22

Number of bits: long long

Number of bits: long long

Description

Describe the length in bits of the C Long long data type that the test hardware supports.

Category: Hardware Implementation

Settings
Default: 64
Minimum: 64
Maximum: 128

The number of bits that represent the C Llong long data type.

Tips

» Usethe long long data type only if your C compiler supports long long.

* You can change the value for custom targets only. For custom targets, all values must be a
multiple of 8 and between 64 and 128.

Dependencies

* Enable long long enables use of this parameter.

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

* The value of this parameter must be greater than or equal to the value of Number of bits: long.
* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerLonglLong
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

2-23

2 Ssimulink Configuration Parameters: Advanced

Application Setting

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 15-2

2-24

Number of bits: float

Number of bits: float

Description

Describe the bit length of floating-point data for the hardware that you use to test code (read only).

Category: Hardware Implementation

Settings
Default: 32

Always equals 32.

Command-Line Information
Parameter: TargetBitPerFloat
Type: integer

Value: 32 (read-only)

Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-25

2 Ssimulink Configuration Parameters: Advanced

Number of bits: double

Description

Describe the bit-length of double data for the hardware that you use to test code (read only).

Category: Hardware Implementation

Settings
Default: 64

Always equals 64.

Command-Line Information
Parameter: TargetBitPerDouble
Type: integer

Value: 64 (read only)

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-26

Number of bits: native

Number of bits: native

Description

Describe the microprocessor native word size for the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: 64
Minimum: 8
Maximum: 64

Enter a value between 8 and 64.
Tip
All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetWordSize

Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

2-27

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-28

Number of bits: pointer

Number of bits: pointer

Description

Describe the bit-length of pointer data for the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: 64
Minimum: 8

Maximum: 64

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerPointer
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-29

2 Ssimulink Configuration Parameters: Advanced

Number of bits: size t

2-30

Description

Describe the bit-length of size t data for the hardware that you use to test code.

If ProdEqTarget is of f, an Embedded Coder® processor-in-the-loop (PIL) simulation checks this
setting with reference to the target hardware. If ProdEqTarget is on, the PIL simulation checks the
ProdBitPerSizeT setting.

Category: Hardware Implementation

Settings
Default: 64

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerSizeT
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

Number of bits: size_t

“Hardware Implementation Pane” on page 15-2
“Verification of Code Generation Assumptions” (Embedded Coder)

2-31

2 Ssimulink Configuration Parameters: Advanced

Number of bits: ptrdiff t

2-32

Description

Describe the bit-length of ptrdiff t data for the hardware that you use to test code.

If ProdEqTarget is of f, an Embedded Coder processor-in-the-loop (PIL) simulation checks this
setting with reference to the target hardware. If ProdEqTarget is on, the PIL simulation checks the
ProdBitPerPtrDiffT setting.

Category: Hardware Implementation

Settings
Default: 64

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerPtrDiffT
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

Number of bits: ptrdiff t

“Hardware Implementation Pane” on page 15-2
“Verification of Code Generation Assumptions” (Embedded Coder)

2-33

2 Ssimulink Configuration Parameters: Advanced

Largest atomic size: integer

2-34

Description

Specify the largest integer data type that can be atomically loaded and stored on the hardware that
you use to test code.

Category: Hardware Implementation

Settings
Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and stored on
the hardware that you use to test code.

Short

Specifies that short is the largest integer data type that can be atomically loaded and stored on
the hardware that you use to test code.

Int

Specifies that int is the largest integer data type that can be atomically loaded and stored on the
hardware that you use to test code.

Long

Specifies that Long is the largest integer data type that can be atomically loaded and stored on
the hardware that you use to test code.

LonglLong

Specifies that Llong long is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or unnecessary
semaphore protection, based on data size, in generated multirate code.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

* You can set this parameter to LongLong only if the hardware used to test the code supports the C
long long data type and you have selected Enable long long.

Command-Line Information
Parameter: TargetLargestAtomicInteger
Value: 'Char' | 'Short' | 'Int' | 'Long"' | 'LongLong’

Largest atomic size: integer

Default: 'Char'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Support long long” on page 2-44

. “Hardware Implementation Pane” on page 15-2

2-35

2 Ssimulink Configuration Parameters: Advanced

Largest atomic size: floating-point

2-36

Description

Specify the largest floating-point data type that can be atomically loaded and stored on the hardware
that you use to test code.

Category: Hardware Implementation

Settings
Default: Float

Float

Specifies that float is the largest floating-point data type that can be atomically loaded and
stored on the hardware that you use to test code.

Double

Specifies that double is the largest floating-point data type that can be atomically loaded and
stored on the hardware that you use to test code.

None

Specifies that there is no applicable setting or not to use this parameter in generating multirate
code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or unnecessary
semaphore protection, based on data size, in generated multirate code.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetLargestAtomicFloat
Value: 'Float' | 'Double' | 'None'
Default: 'Float'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

Largest atomic size: floating-point

Application Setting

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 15-2

2-37

2 Simulink Configuration Parameters: Advanced

Byte ordering

2-38

Description

Describe the byte ordering for the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: Little Endian

Unspecified
Specifies that the code determines the endianness of the hardware. This choice is the least
efficient.
Big Endian
The most significant byte comes first.
Little Endian
The least significant byte comes first.

Note For guidelines about configuring Production hardware controls for code generation, see
Hardware Implementation Options (Simulink Coder).

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: TargetEndianess

Value: 'Unspecified' | 'LittleEndian' | 'BigEndian’
Default: 'LittleEndian’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

Byte ordering

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 15-2

2-39

2 Ssimulink Configuration Parameters: Advanced

Signed integer division rounds to

Description

Describe how your compiler for the test hardware rounds the result of dividing two signed integers.

Category: Hardware Implementation

Settings

Default: Zero

Undefined

Choose this option if neither Zero nor Floor describes the compiler behavior, or if that behavior
is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer to zero as
the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer to negative
infinity.

Tips

* Use the Integer rounding mode parameter on your model's blocks to simulate the rounding
behavior of the C compiler that you use to compile code generated from the model. This setting
appears on the Signal Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block.

* For most blocks, the value of Integer rounding mode completely defines rounding behavior. For
blocks that support fixed-point data and the Simplest rounding mode, the value of Signed

integer division rounds to also affects rounding. For details, see “Rounding” (Fixed-Point
Designer).

* For information on how this option affects code generation, see Hardware Implementation Options
(Simulink Coder).

» This table illustrates the compiler behavior described by the options for this parameter.

N D Ideal N/D Zero Floor Undefined
33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8or-9
33 -4 -8.25 -8 -9 -8or-9
-33 -4 8.25 8 8 8or9

2-40

Signed integer division rounds to

Dependency

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetIntDivRoundTo
Value: 'Floor' | 'Zero' | 'Undefined'’
Default: 'Zero'

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.
Zero for production code generation.

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 15-2

2-41

2 Ssimulink Configuration Parameters: Advanced

Shift right on a signed integer as arithmetic shift

Description

Describe how your compiler for the test hardware fills the sign bit in a right shift of a signed integer.

Category: Hardware Implementation

Settings
Default: On

|7On

Generates simple, efficient code whenever the Simulink model performs arithmetic shifts on
signed integers.

I off
Generates fully portable but less efficient code to implement right arithmetic shifts.

Tips
* Select this parameter if your C compiler implements a signed integer right shift as an arithmetic
right shift.

* An arithmetic right shift fills bits vacated by the right shift with the value of the most significant
bit, which indicates the sign of the number in twos complement notation. It is equivalent to
dividing the number by 2.

» This setting affects only code generation.

Dependency

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetShiftRightIntArith
Value: 'on' | 'off'

Default: 'on'

Recommended settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

2-42

Shift right on a signed integer as arithmetic shift

Application Setting

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 15-2

2-43

2 Ssimulink Configuration Parameters: Advanced

Support long long

2-44

Description

Specify that your C compiler supports the C Long long data type. Most C99 compilers support Long
long.

Category: Hardware Implementation

Settings
Default: Off

41 On

Enables use of C Llong long data type on the test hardware.

Off
Disables use of C long long data type on the test hardware.
Tips

» This parameter is enabled only if the selected test hardware supports the C Long long data type.
» If your compiler does not support C Llong long, do not select this parameter.

Dependencies

This parameter enables Number of bits: long long.

Command-Line Information
Parameter: TargetLonglLongMode
Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same as
production hardware is selected. If it is not selected, no
recommendation.

Support long long

See Also

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Number of bits: long long” on page 2-23

. “Hardware Implementation Pane” on page 15-2

2-45

2 Ssimulink Configuration Parameters: Advanced

Allowed unit systems

2-46

Description
Specify unit systems allowed in the model.

Category: Diagnostics

Settings

Default: all

all or comma-separated list of one or more of:

SI
International System of Units.
SI (extended)
International System of Units (extended).
English
English units.
CGS
Centimetre-gram-second system of units.

Tip

As an alternative to the text box, click the Set Allowed Unit Systems button.

Set Allowed Unit Systems
Unit System Configuration
Restrict units to specified allowed unit systems.
Parameters

Disallowed unit systems

Allowed unit systems

X5

=1

English

SI (extended)
CGS

Allow ==

<< Disallow

[T] Allow all unit systems

OK

H Cancel H

Help

Allowed unit systems

* To allow all unit systems, select the Allow all unit systems check box.
* Use the Allow and Disallow buttons to allow or disallow selected unit systems.

Command-Line Information

Parameter: AllowedUnitSystems

Type: character vector

Value: ST | SI (extended) | English | CGS in a comma-delimited list or all, without quotation
marks

Default: all

See Also

Related Examples
. “Unit Specification in Simulink Models”
. Solver Diagnostics on page 9-2

2-47

2 Ssimulink Configuration Parameters: Advanced

Units inconsistency messages

Description

Specify if unit inconsistencies should be reported as warnings. Select the diagnostic action to take
when the Simulink software detects unit inconsistencies.

Category: Diagnostics

Settings
Default: warning

warning
Display unit inconsistencies as warnings.
none
Display nothing for unit inconsistencies (do not report unit inconsistencies),

Command-Line Information
Parameter: UnitsInconsistencyMsg
Value: 'warning' | 'none’

Default: 'warning'

See Also

Related Examples
. “Unit Specification in Simulink Models”
. Solver Diagnostics on page 9-2

2-48

Allow automatic unit conversions

Allow automatic unit conversions

Description

Allow automatic unit conversions in the model.

Category: Diagnostics

Settings

Default: On

4 On

Enables automatic unit conversions in cases where units have a known mathematical
relationship. For more information, see “Converting Units”.

Off

Disables automatic unit conversions in cases where units where units have a known mathematical
relationship. To convert, you must insert a Unit Conversion block between the differing ports.

Command-Line Information

Parameter: AllowAutomaticUnitConversions
Value: 'on' | 'off'
Default: 'on'

See Also

Related Examples

. “Unit Specification in Simulink Models”
. “Converting Units”
. Solver Diagnostics on page 9-2

2-49

2 Ssimulink Configuration Parameters: Advanced

Dataset signal format

2-50

Description
Format for logged Dataset leaf elements.

Category: Data Import/Export

Settings
Default: timeseries

timeseries

Save Dataset element values in MATLAB® timeseries format.
timetable

Save Dataset element values in MATLAB timetable format.

Comparison of Formats
The timetable format enables easier merging of logged data from multiple simulations.
Property Display

The timeseries format displays one field for time properties (TimeInfo) and a second field for data
properties (DataInfo). For example, here are the properties of a timeseries object for a nonscalar
signal.

ts

timeseries

Common Properties:
Name: '
Time: [1001x1 double]
TimeInfo: [1x1 tsdata.timemetadata]
Data: [1001x1 double]
DataInfo: [1x1 tsdata.datametadata]

When you enter the name of a timetable object (for example, tt) and query the properties, you see
all of the properties.

tt.Properties
ans =

struct with fileds:
Description: "'
UserData: []
DimensionNames: {'Time' 'Variables'}
VariableDescriptions: {}

Dataset signal format

VariableNames: ['temperature' 'WindSpeed' 'WindDirection']
VariableUnits: {}
VariableContinuity: ['continuous']

RowTimes: [64x1 duration]

Data Access

To access data logged in the timeseries format, use the Data property for a signal. For example,
for a timeseries object ts (only first five values shown):

ts = yout{1l}.Values;

ts.Data
ans =
0
-0.0002
-0.0012
-0.0062
-0.0306

The timetable format for logged Dataset data produces a table with one time column, called
Time, and one data column, called Data. The Time column is the simulation time vector for a given
signal, stored as a duration type, with the setting of seconds to match the units of simulation time,
starting with the simulation start time (typically set to 0 sec). The Simulink signal dimensions of [n]
and [nx1] are treated equivalently in the timetable representation. For example, for a timetable
object tt (only first five values shown):

tt = yout{l}.Values;

tt.Data
Time Data
0 sec [1x3x2 doublel]
0.1 sec [1x3x2 doublel]
0.2 sec [1x3x2 doublel]
0.3 sec [1x3x2 doublel]
0.4 sec [1x3x2 doublel]

The number of samples is the first dimension in the Data column of the timetable object, but it is
the last dimension in the data field of logged timeseries data that is nonscalar. Therefore, when
you access data in timetable format, you may need to reshape the data when each sample is a
nonscalar array. One option is to use the squeeze function. For example, to access the first data row
in the dataset, you can use a command like this:

squeeze(tt.Data{l,1})
ans =
1 2
3 4
5 6

If a signal is a bus or array of buses, the signal values are logged as a structure of timetable
objects, with each leaf of the structure corresponding to the logged result of each leaf signal in the
bus.

2-51

2 Ssimulink Configuration Parameters: Advanced

2-52

Units

For data logged in Simulink, the timeseries format displays units for time values in the Units
property. Units can be specified as any value of any class. Timeseries logging sets the units to a
Simulink.SimulationData.Unit object, if the logged signal has units specified. For loading, units
are honored only if they are of type Simulink.SimulationData.Unit; otherwise, they are
ignored.

For the timetable format, Simulink does not support units for logged data.
Data Interpolation

The timeseries format Interpolation property displays whether the interpolation method is
linear (default) or zoh.

The timetable format VariableContinuity property characterizes variables as continuous or
discrete. The possible values for simulation data are:

* continuous - Corresponds to the timeseries property Interpolation setting of Linear.
Simulink uses this setting for filling continuous sample times.

* step - Corresponds to the timeseries property Interpolation setting of zoh.

Simulink uses this setting for filling discrete sample times.
Uniform and Nonuniform Time
The timeseries format displays whether the time data is uniform or nonuniform. For data logged
for continuous sample times (linear interpolation), the TimeInfo property indicates that the time is
nonuniform and gives the length. For a discrete sample times (zero-order hold interpolation), the
TimeInfo property indicates that the time is uniform and gives the length and increment.

The timetable format does not have a property for uniform and nonuniform time data.

For data in timeseries or timetable format, you can use the MATLAB isregular function to get
this time information.

Signal Name

The timeseries format stores the name of a logged signal in a
Simulink.SimulationData.Element wrapper object, as well as in the timeseries object itself.

The timetable format stores the name of a logged signal in a
Simulink.SimulationData.Element wrapper object, but not in the timetable object itself.

Tips

* The Dataset signal format parameter has no effect when using Scope blocks to log data.

Programmatic Use
Parameter: DatasetSignalFormat
Value: 'timeseries' | 'timetable’
Default: 'timeseries’

Dataset signal format

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting

No impact

No impact

No recommendation
No recommendation

. “Model Configuration Parameters: Data Import/Export” on page 3-2

. “Log Data to Persistent Storage”

2-53

2 Ssimulink Configuration Parameters: Advanced

Stream To Workspace blocks

2-54

Description

Whether data logged using To Workspace blocks streams to the Simulation Data Inspector.

Category: Data Import/Export

Settings
Default: On

¥ On
Data logged using To Workspace blocks streams to the Simulation Data Inspector during
simulation.

I off
Data logged using To Workspace blocks does not stream to the Simulation Data Inspector.

When you disable this parameter, To Workspace blocks do not support:

* Logging arrays of buses.
* Logging signals with string or half data types.
* Logging signals with int64 or uint64 using the built-in data types.

When a license for Fixed-Point Designer™ is available, int64 and uint64 data is logged as a
f1i object. When a license for Fixed-Point Designer is not available, data is logged as double
data.

* Logging data inside for-each subsystems.
* Using the Timeseries format in rapid accelerator simulations.

Tips

When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. To control the amount of data
retained in the Simulation Data Inspector, do not use this parameter. See “Limit the Size of Logged
Data”.

Programmatic Use
Parameter: StreamToWks
Value: 'on' | 'off'
Default: 'on'

Stream To Workspace blocks

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting

On

No recommendation
On

No recommendation

. “Model Configuration Parameters: Data Import/Export” on page 3-2

. “Limit the Size of Logged Data”

2-55

2 Ssimulink Configuration Parameters: Advanced

Array bounds exceeded

2-56

Description

Ensure that Simulink-allocated memory used in S-functions does not write beyond its assigned array
bounds when writing to its outputs, states, or work vectors.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

» Use this option to check whether execution of each instance of a block during model simulation
writes data to memory locations not allocated to the block. This can happen only if your model
includes a user-written S-function that has a bug.

* Enabling this option slows down model execution considerably. Thus, you should enable it only if
you suspect that your model contains a user-written S-function that has a bug.

» This option causes Simulink software to check whether a block writes outside the memory
allocated to it during simulation. Typically this can happen only if your model includes a user-
written S-function that has a bug.

* See Checking Array Bounds in “Handle Errors in S-Functions” for more information on using this
option.

* For models referenced in Accelerator mode, Simulink ignores the Array bounds exceeded
parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, in the Modeling tab, click Model Advisor, then click OK.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model reference
simulation check.

Command-Line Information
Parameter: ArrayBoundsChecking

Array bounds exceeded

Value: 'none' | ‘warning' | 'error’
Default: 'none’

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

. Diagnosing Simulation Errors

. Data Validity Diagnostics on page 6-2

Setting
warning
No impact
none

No impact

2-57

2 Ssimulink Configuration Parameters: Advanced

Model Verification block enabling

2-58

Description

Enable model verification blocks in the current model either globally or locally.

Category: Diagnostics

Settings

Default: Use local settings

Use local settings

Enables or disables blocks based on the value of the Enable assertion parameter of each block.
If a block's Enable assertion parameter is on, the block is enabled; otherwise, the block is
disabled.

Enable All

Enables all model verification blocks in the model regardless of the settings of their Enable
assertion parameters.

Disable All

Disables all model verification blocks in the model regardless of the settings of their Enable
assertion parameters.

Dependency

Simulation and code generation ignore the Model Verification block enabling parameter when
model verification blocks are inside a S-function.

Command-Line Information

Parameter: AssertControl

Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution EnableAll for simulation or during development

DisableAll for production code generation

Model Verification block enabling

See Also

Related Examples
. Diagnosing Simulation Errors
. Data Validity Diagnostics on page 6-2

2-59

2 Ssimulink Configuration Parameters: Advanced

Check undefined subsystem initial output

Description

Specify whether to display a warning if the model contains a conditionally executed subsystem in
which a block with a specified initial condition drives an Outport block with an undefined initial
condition

Category: Diagnostics

Settings
Default: On

IFOn

Displays a warning if the model contains a conditionally executed subsystem in which a block
with a specified initial condition drives an Outport block with an undefined initial condition.

I off

Does not display a warning.

Tips

+ This situation occurs when a block with a specified initial condition, such as a Constant, Initial
Condition, or Delay block, drives an Outport block with an undefined initial condition (Initial
output parameter is set to []).

* Models with such subsystems can produce initial results (i.e., before initial activation of the
conditionally executed subsystem) in the current release that differ from initial results produced
in Release 13 or earlier releases.

Consider for example the following model.

@ ex_check_undefined_subsys_initial_cutput p

2-60

|| *l_.D
Step

Scope

r

F

Ourt1

Triggered SubsystEm

Check undefined subsystem initial output

[P &x_check_undefined_subsys_initial_output # [Pz Triggered Subsystem

Trigger
- —
Outl
Constant

This model does not define the initial condition of the triggered subsystem's output port.

The following figure compares the superimposed output of this model's Step block and the
triggered subsystem in Release 13 and the current release.

Release 13 Current Release

Notice that the initial output of the triggered subsystem differs between the two releases. This is
because Release 13 and earlier releases use the initial output of the block connected to the output
port (i.e., the Constant block) as the triggered subsystem's initial output. By contrast, this release
outputs 0 as the initial output of the triggered subsystem because the model does not specify the
port's initial output.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to Classic.
Command-Line Information
Parameter: CheckSSInitialOutputMsg

Value: 'on' | 'off'
Default: 'on'

2-61

2 Ssimulink Configuration Parameters: Advanced

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

Related Examples

. Diagnosing Simulation Errors

. “Conditionally Executed Subsystems and Models”

. “Underspecified initialization detection” on page 2-65

. “Model Configuration Parameters: Diagnostics” on page 9-2

2-62

Detect multiple driving blocks executing at the same time step

Detect multiple driving blocks executing at the same time step

Description

Select the diagnostic action to take when the software detects a Merge block with more than one
driving block executing at the same time step.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink terminates the simulation and displays an error message only if the execution order of
the driving blocks is not explicitly defined.

Tips

* Connecting the inputs of a Merge block to multiple driving blocks that execute at the same time
step can lead to inconsistent results for both simulation and generated code. Set Detect multiple
driving blocks executing at the same time step to error to avoid such situations.

» This diagnostic action does not cross into referenced models. For example, a test harness does not
detect when the model under test contains a Merge block with more than one driving block
executing at the same time step. The model under test is referenced by a Model block in the test
harness.

 This diagnostic does not apply when one function-call initiator block, such as a Stateflow® Chart
or MATLAB Function block, determines the execution order of the driving blocks that connect to
the Merge block. In this case, the Merge block results are consistent despite having multiple
driving blocks that execute at the same time step.

Command-Line Information

Parameter: MergeDetectMultiDrivingBlocksExec
Value: 'none' | 'warning' | 'error’'

Default: 'error'

Recommended Settings

Application Setting
Debugging error
Traceability error

2-63

2 Ssimulink Configuration Parameters: Advanced

2-64

Application Setting
Efficiency No impact
Safety precaution error
See Also

Merge

Related Examples

. Diagnosing Simulation Errors

. “Check usage of Merge blocks”

. “Underspecified initialization detection” on page 2-65
. Data Validity Diagnostics on page 6-2

Underspecified initialization detection

Underspecified initialization detection

Description

Select how Simulink software handles initialization of initial conditions for conditionally executed
subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time Integrator blocks.

Category: Diagnostics

Settings

Default: Simplified

Classic
Initial conditions are initialized the same way they were prior to R2008b.

Simplified
Initial conditions are initialized using the enhanced behavior, which can improve the consistency
of simulation results.

Tips

* Use Classic to ensure compatibility with previous releases of Simulink. Use Simplified to
improve the consistency of simulation results, especially for models that do not specify initial
conditions for conditional subsystem output ports, and for models that have conditionally executed
subsystem output ports connected to S-functions. For more information, see “Simplified
Initialization Mode” and “Classic Initialization Mode”.

+ For existing models, MathWorks® recommends using the Model Advisor to migrate your model to
the new settings. To migrate your model to simplified initialization mode, run the following Model
Advisor checks:

* “Check usage of Merge blocks”

* “Check usage of Outport blocks”

* “Check usage of Discrete-Time Integrator blocks”

* “Check model settings for migration to simplified initialization mode”

For more information, see “Convert from Classic to Simplified Initialization Mode”.

* When using Simplified initialization mode, you must set “Bus signal treated as vector” on page
5-12 to error on the Connectivity Diagnostics pane.

Dependencies

Selecting Classic enables the following parameter:

* Check undefined subsystem initial output

Selecting Simplified disables this parameter.

2-65

2 Ssimulink Configuration Parameters: Advanced

Command-Line Information

Parameter: UnderspecifiedInitializationDetection
Value: 'Classic' | 'Simplified'’

Default: 'Simplified’

Recommended Settings

Application Setting
Debugging Simplified
Traceability Simplified
Efficiency Simplified
Safety precaution Simplified
See Also

Merge | Discrete-Time Integrator

Related Examples

. “Convert from Classic to Simplified Initialization Mode”
. “Conditional Subsystem Initial Output Values”

. “Conditionally Executed Subsystems and Models”

. “Simplified Initialization Mode”

. “Classic Initialization Mode”

. “Conditional Subsystem Output Values When Disabled”
. Diagnosing Simulation Errors

. Data Validity Diagnostics on page 6-2

2-66

Solver data inconsistency

Solver data inconsistency

Description

Select the diagnostic action to take if Simulink software detects S-functions that have continuous
sample times, but do not produce consistent results when executed multiple times.

Category: Diagnostics

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Consistency checking can cause a significant decrease in performance (up to 40%).

* Consistency checking is a debugging tool that validates certain assumptions made by Simulink
ODE solvers. Use this option to:

» Validate your S-functions and ensure that they adhere to the same rules as Simulink built-in
blocks.

* Determine the cause of unexpected simulation results.
* Ensure that blocks produce constant output when called with a given value of t (time).

+ Simulink software saves (caches) output, the zero-crossing, the derivative, and state values from
one time step for use in the next time step. The value at the end of a time step can generally be
reused at the start of the next time step. Solvers, particularly stiff solvers such as ode23s and
odel5s, take advantage of this to avoid redundant calculations. While calculating the Jacobian
matrix, a stiff solver can call a block's output functions many times at the same value of t.

* When consistency checking is enabled, Simulink software recomputes the appropriate values and
compares them to the cached values. If the values are not the same, a consistency error occurs.
Simulink software compares computed values for these quantities:

* Qutputs

* Zero crossings
* Derivatives

* States

2-67

2 Ssimulink Configuration Parameters: Advanced

2-68

Command-Line Information
Parameter: ConsistencyChecking
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

. Diagnosing Simulation Errors
. Choosing a Solver

. Solver Diagnostics on page 9-2

Setting
warning
No impact
none

No impact

Ignored zero crossings

Ignored zero crossings

Description
Select the diagnostic action to take if Simulink detects zero-crossings that are being ignored.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Consistency checking can cause a significant decrease in performance (up to 40%).

» Consistency checking is a debugging tool that validates certain assumptions made by Simulink
ODE solvers. Use this option to:

* Validate your S-functions and ensure that they adhere to the same rules as Simulink built-in
blocks.

* Determine the cause of unexpected simulation results.
* Ensure that blocks produce constant output when called with a given value of t (time).

* Simulink software saves (caches) output, the zero-crossing, the derivative, and state values from
one time step for use in the next time step. The value at the end of a time step can generally be
reused at the start of the next time step. Solvers, particularly stiff solvers such as ode23s and
odel5s, take advantage of this to avoid redundant calculations. While calculating the Jacobian
matrix, a stiff solver can call a block's output functions many times at the same value of t.

* When consistency checking is enabled, Simulink software recomputes the appropriate values and
compares them to the cached values. If the values are not the same, a consistency error occurs.
Simulink software compares computed values for these quantities:

e Qutputs

* Zero crossings
* Derivatives

» States

Command-Line Information
Parameter: IgnoredZcDiagnostic

2-69

2 Ssimulink Configuration Parameters: Advanced

2-70

Value: 'none' | ‘warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency none
Safety precaution No impact
See Also

Related Examples
. Solver Diagnostics on page 9-2

Masked zero crossings

Masked zero crossings

Description

Select the diagnostic action to take if Simulink detects zero-crossings that are being masked.

Category: Diagnostics

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

This parameter is enabled only if Type is set to Variable-step.
Command-Line Information

Parameter: MaskedZcDiagnostic

Value: 'none' | 'warning' | 'error'
Default: 'none’

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency none
Safety precaution No impact
See Also

Related Examples

. Solver Diagnostics on page 9-2

2-71

2 Ssimulink Configuration Parameters: Advanced

Block diagram contains disabled library links

2-72

Description
Select the diagnostic action to take when saving a model containing disabled library links.

Category: Diagnostics

Settings
Default: warning

none
Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram may not contain
the information you had intended.

error
Simulink software displays an error message. The model is not saved.

Tip
Use the Model Advisor Identify disabled library links check to find disabled library links.

Command-Line Information
Parameter: SaveWithDisabledLinksMsg
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Disable or Break Links to Library Blocks”
. “Identify disabled library links”

. Saving a Model

Block diagram contains disabled library links

Solver Diagnostics on page 9-2

2-73

2 Ssimulink Configuration Parameters: Advanced

Block diagram contains parameterized library links

2-74

Description
Select the diagnostic action to take when saving a model containing parameterized library links.

Category: Diagnostics

Settings
Default: warning

none
Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram may not contain
the in formation you had intended.

error
Simulink software displays an error message. The model is not saved.

Tips

* Use the Model Advisor Identify parameterized library links check to find
parameterized library links.

Command-Line Information
Parameter: SaveWithParameterizedLinksMsg
Value: 'none' | 'warning' | 'error’

Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Identify parameterized library links”
. Solver Diagnostics on page 9-2

Initial state is array

Initial state is array

Description

Message behavior when the initial state is an array

Category: Diagnostics

Settings

Default: warning

warning

Simulink software displays a warning when the initial state is an array. If the order of the
elements in the array do not match the order in which blocks initialize, the simulation can

produce unexpected results.
error

Simulink software displays an error message when the initial state is an array.

none

Simulink software does not display a message when the initial state is an array.

Tips

* Avoid using an array for the initial state. If the order of the elements in the array does not match
the order in which blocks initialize, the simulation can produce unexpected results. To promote
deterministic simulation results, use the default setting or set the diagnostic to error.

* Instead of using array format for the initial state, use a format such as structure, structure with

time, or Dataset.

Command-Line Information
Parameter:InitInArrayFormatMsg
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

Use the default setting of warning.
Use the default setting of warning.
Use the default setting of warning.
Use the default setting of warning.

2-75

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples

. “Initial state” on page 3-6

. “Save Block States and Simulation Operating Points”

. “Dataset Conversion for Logged Data”

. “Model Configuration Parameters: Diagnostics” on page 9-2

2-76

Insufficient maximum identifier length

Insufficient maximum identifier length

Description

For referenced models, specify diagnostic action when the configuration parameter Maximum
identifier length does not provide enough character length to make global identifiers unique across
models.

Category: Diagnostics

Settings

Default: warning

warning

The code generator displays a warning message when the configuration parameter Maximum
identifier length does not provide enough character length to make global identifiers unique
across models. The code generator truncates the identifier to fit the specified value in the
configuration parameter Maximum identifier length in the generated code.

error

The code generator displays an error message when the configuration parameter Maximum
identifier length does not provide enough character length to make global identifiers unique
across models.

none

The code generator does not display a message when the configuration parameter Maximum
identifier length does not provide enough character length to make global identifiers unique
across models. The code generator truncates the identifier to fit the specified value in the
configuration parameter Maximum identifier length in the generated code.

Command-Line Information

Parameter: ModelReferenceSymbolNameMessage
Type: character vector

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting

Debugging Use the default setting of warning.
Traceability Use the default setting of warning.
Efficiency Use the default setting of warning.
Safety precaution Use the default setting of warning.

2-77

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples

. Maximum identifier length (Simulink Coder)

. “Model Configuration Parameters: Diagnostics” on page 9-2
. “Specify Identifier Length to Avoid Naming Collisions” (Simulink Coder)
. “Set Configuration Parameters for Code Generation of Model Hierarchies” (Simulink Coder)

2-78

Import custom code

Import custom code

Description

Specify whether or not to parse available custom code variables and functions and compile custom
code into its own simulation target. This option affects the C Caller block, the C Function block, the
MATLAB Function block, the MATLAB System block, and Stateflow charts.

Category: Simulation Target

Settings

Default: On

On

When this option is on, Simulink:

Off

Uses the same custom code for simulation with the C Caller block, the C Function block, the
MATLAB Function block, the MATLAB System block, and Stateflow charts. When using the C
Caller block or the C Function block, this option must be turned on.

Automatically rebuilds the custom code simulation target when specified custom code
dependencies change.

Automatically rebuilds simulation targets for blocks using custom code when custom code
changes.

Enables Just-In-Time (JIT) compilation of the C Caller block, the C Function block, the
MATLAB Function block, the MATLAB System block, and Stateflow charts.

Allows the Enable custom code analysis option to enable Simulink Coverage™ and Simulink
Design Verifier™ support for custom code.

Allows edit and compile time error detection for C interface errors from your model.

Calls specified initialize code and terminate code at the start and end of model simulation,
respectively, regardless of whether any block in the model calls external custom code. See
Initialize function and Terminate function.

Enables parsing of custom code to report unresolved symbols in Stateflow charts in your
model.

Requires that your custom code be complete and not dependent on any other files in order to
be built.

When this option is off, Simulink:

Combines Simulation Target custom code dependencies with those specified by other means
(coder.cinclude, coder.updateBuildInfo, and coder.ExternalDependency) in
Stateflow charts that use MATLAB as the action language, MATLAB Function blocks, and
MATLAB System blocks.

Calls specified initialize code and terminate code only if necessary. If no block in the model
calls external custom code, Simulink does not call the initialize code or the terminate code.
See Initialize function and Terminate function.

2-79

2 Ssimulink Configuration Parameters: Advanced

Note When this option is on, if you use the same custom code across different unique configurations,
each unique configuration is treated as a separate unit even if the configurations refer to the same
custom code. For instance, if you have a root-level model and a library subsystem that refer to the
same custom code, then the custom code global variables accessed by the library block and the root-
level model are different.

Note In most cases, Import custom code should be selected. Clear the Import custom code
parameter only if your custom code is incompatible with this parameter.

Command-Line Information
Parameter: SimParseCustomCode
Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

Related Examples

. “Reuse Custom Code in Stateflow Charts” (Stateflow)

. “Manage Symbols in the Stateflow Editor” (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 13-2

2-80

Compiler optimization level

Compiler optimization level

Description

Sets the degree of optimization used by the compiler when generating code for acceleration,
Stateflow charts, MATLAB Function block, and MATLAB System block.

Category: Simulation Target

Settings
Default: Optimizations off (faster builds)

Optimizations off (faster builds)
Specifies the compiler not to optimize code. This results in faster build times.
Optimizations on (faster runs)

Specifies the compiler to generate optimized code. The generated code will run faster, but the
model build will take longer than if optimizations are off.

Tips
* The default Optimizations off is a good choice for most models. This quickly produces code
that can be used with acceleration.

* SetOptimizations on to optimize your code. The fast running code produced by optimization
can be advantageous if you will repeatedly run your model with the accelerator.

Command-Line Information

Parameter: SimCompilerOptimization
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Acceleration”

2-81

2 Ssimulink Configuration Parameters: Advanced

. “Interact with the Acceleration Modes Programmatically”
. “Customize the Acceleration Build Process”
. “Model Configuration Parameters: Code Generation Optimization” (Simulink Coder)

2-82

Verbose accelerator builds

Verbose accelerator builds

Description

Select the amount of information displayed during code generation for Simulink Accelerator mode,
referenced model Accelerator mode, and Rapid Accelerator mode.

Category: Simulation Target

Settings

Default: Off

I off
Display limited amount of information during the code generation process.

¥ On

Display progress information during code generation, and show the compiler options in use.

Command-Line Information
Parameter: AccelVerboseBuild
Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Controlling Verbosity During Code Generation”
. “Model Configuration Parameters: Code Generation Optimization” (Simulink Coder)

2-83

2 Ssimulink Configuration Parameters: Advanced

Implement logic signals as Boolean data (vs. double)

Description
Controls the output data type of blocks that generate logic signals.

Category: Simulation Target

Settings
Default: On

¥ On
Blocks that generate logic signals output a signal of boolean data type. This reduces the memory
requirements of generated code.

I off

Blocks that generate logic signals output a signal of double data type. This ensures compatibility
with models created by earlier versions of Simulink software.

Tips

* Setting this option on reduces the memory requirements of generated code, because a Boolean
signal typically requires one byte of storage compared to eight bytes for a double signal.

* Setting this option off allows the current version of Simulink software to run models that were
created by earlier versions of Simulink software that supported only signals of type double.

» This optimization affects the following blocks:

* Logical Operator block - This parameter affects only those Logical Operator blocks whose
Output data type parameter specifies Inherit: Logical (see Configuration
Parameters: Optimization). If this parameter is selected, such blocks output a signal of
boolean data type; otherwise, such blocks output a signal of double data type.

* Relational Operator block - This parameter affects only those Relational Operator blocks
whose Output data type parameter specifies Inherit: Logical (see Configuration
Parameters: Optimization). If this parameter is selected, such blocks output a signal of
boolean data type; otherwise, such blocks output a signal of double data type.

+ Combinatorial Logic block - If this parameter is selected, Combinatorial Logic blocks output
a signal of boolean data type; otherwise, they output a signal of double data type. See
Combinatorial Logic in the Simulink Reference for an exception to this rule.

* Hit Crossing block - If this parameter is selected, Hit Crossing blocks output a signal of
boolean data type; otherwise, they output a signal of double data type.

Dependencies

» This parameter is disabled for models created with a version of Simulink software that supports
only signals of type double.

2-84

Implement logic signals as Boolean data (vs. double)

Command-Line Information
Parameter: BooleanDataType

Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On

Safety precaution On

See Also

Related Examples

. “Optimize Generated Code Using Boolean Data for Logical Signals” (Simulink Coder)

. “Math and Data Types Pane” on page 22-2

2-85

2 Ssimulink Configuration Parameters: Advanced

Block reduction

2-86

Description
Reduce execution time by collapsing or removing groups of blocks.

Category: Simulation Target

Settings
Default: On

¥ On
Simulink software searches for and reduces these block patterns:
* Redundant type conversions — Unnecessary type conversion blocks, such as an int type
conversion block with an input and output of type int
* Dead code — Blocks or signals in an unused code path

» Fast-to-slow Rate Transition block in a single-tasking system — Rate Transition blocks
with an input frequency faster than its output frequency

I off

Simulink software does not search for block patterns that can be optimized. Simulation and
generated code are not optimized.

Tips

* When you select Block reduction, Simulink software collapses certain groups of blocks into a
single, more efficient block, or removes them entirely. This reduction results in faster execution
during model simulation and in generated code.

* Block reduction does not change the appearance of the source model.
* Tunable parameters do not prevent a block from being reduced by dead code elimination.

* Once block reduction takes place, Simulink software does not display the sorted order for blocks
that have been removed.

* You can determine programmatically which blocks are reduced in a model by querying the
ReducedNonVirtualBlockList parameter of the model to obtain a vector of the block handles
of the reduced blocks.

ReducedBlockHandlesVector = get param(ModelName, 'ReducedNonVirtualBlockList');

* Ifyou have a Simulink Coder license, block reduction is intended to remove only the generated
code that represents execution of a block. Other supporting data, such as definitions for sample
time and data types might remain in the generated code.

Dead Code Elimination

Any blocks or signals in an unused code path are eliminated from generated code.

Block reduction

» The following conditions need to be met for a block to be considered part of an unused code path:

» All signal paths for the block end with a block that does not execute. Examples of blocks that
do not execute include Terminator blocks, disabled Assertion blocks, S-Function blocks
configured for block reduction, and To Workspace blocks when MAT-file logging is disabled for
code generation.

* No signal paths for the block include global signal storage downstream from the block.
* Tunable parameters do not prevent a block from being reduced by dead code elimination.

O : (1)
Int Out?

MeverDeadCodezain

D>

Iz -
AlwssDesdCodeGain (ovminator

- > '> o]

Zain Scope

* Consider the signal paths in the following block diagram.

If you check Block reduction, Simulink Coder software responds to each signal path as follows:

For Signal Path... Simulink Coder Software...

In1 to Outl Generates code because dead code elimination conditions are not
met.

In2 to Terminator Does not generate code because dead code elimination conditions
are met.

In3 to Scope Generates code if MAT-file logging is enabled and eliminates code if
MAT-file logging is disabled.

Highlight Reduced Blocks

When Block reduction is selected, you can highlight nonvirtual blocks that are removed to reduce
execution time during model simulation and code generation. To highlight such blocks, on the
Simulink toolstrip, go to the Debug tab. From the Information Overlays menu, select Reduced
Blocks.

2-87

2 Simulink Configuration Parameters: Advanced

X, Trace Signal

-) Comment Qut %
SMREES)| Output Values B
“Sean:h

? | SAMPLE TIME

ﬁ Colors

D1, Text

LIBRARY LINKS

& Show All Links
&2 Disabled Links
BLOCKS

05| Execution Order

"1 Reduced Blocks

1] Variant Conditions

Note If there are no reduced blocks to highlight, the Reduced Blocks option is disabled.

Reduced blocks appear highlighted on the canvas. After you update or simulate your model, blocks
that are reduced during normal simulation are highlighted. After you build your model, blocks that
are reduced during code generation are highlighted.

To remove the highlighting, click @ in the upper-right corner of the canvas, or clear the Reduced
Blocks selection from the Information Overlays menu.

Command-Line Information

Parameter: BlockReduction
Value: 'on' | 'off'
Default: 'on'

2-88

Block reduction

Recommended Settings

Application Setting

Debugging Off for simulation or during development
No impact for production code generation

Traceability Off

Efficiency On

Safety precaution No impact

See Also

Related Examples

“Remove Code for Blocks That Have No Effect on Computational Results” (Simulink Coder)
“Eliminate Dead Code Paths in Generated Code” (Simulink Coder)

“Time-Based Scheduling” (Simulink Coder)

“Performance” (Simulink Coder)

“Model Configuration Parameters: Simulation Target” on page 13-2

2-89

2 Simulink Configuration Parameters: Advanced

Conditional input branch execution

Description

Improve model execution when the model contains Switch and Multiport Switch blocks.

Category: Simulation Target

Settings
Default: On

|7On

Executes only the blocks required to compute the control input and the data input selected by the
control input. This optimization speeds execution of code generated from the model. Limits to
Switch and Multiport Switch block optimization:

* Only blocks with -1 (inherited) or inf (Constant) sample time can participate.

* Blocks with outputs flagged as test points cannot participate.

* No multirate block can participate.

» Blocks with states cannot participate.

* Model blocks cannot participate.

* Only S-functions with option SS OPTION CAN BE CALLED CONDITIONALLY set can
participate.

I off
Executes all blocks driving the Switch block input ports at each time step.
Command-Line Information

Parameter: ConditionallyExecuteInputs
Value: 'on' | 'off'
Default: 'on’

Recommended Settings

Application Setting

Debugging No impact

Traceability On

Efficiency On (execution), No impact (ROM, RAM)
Safety precaution No impact

2-90

Conditional input branch execution

See Also

Related Examples

. “Use Conditional Input Branch Execution” (Simulink Coder)

. “Conditionally Executed Subsystems Overview”

. “Performance” (Simulink Coder)

. “Model Configuration Parameters: Simulation Target” on page 13-2
. “Simulink Optimizations and Model Coverage” (Simulink Coverage)

2-91

2 Ssimulink Configuration Parameters: Advanced

Break on Ctri+C

Description

Enables responsiveness checks in code generated for MATLAB Function blocks, Stateflow charts, and
dataflow domains. This parameter applies to the model during simulation and code generation.

Category: Simulation Target

Settings
Default: On

Y1 On

Enables periodic checks for Ctrl+C breaks in code generated for MATLAB Function blocks,
Stateflow charts, and dataflow domains. Also allows graphics refreshing.

Off

Disables periodic checks for Ctrl+C breaks in code generated for MATLAB Function blocks,
Stateflow charts, and dataflow domains. Also disables graphics refreshing.

Caution Without these checks, the only way to end a long-running execution might be to
terminate the MATLAB session.

Command-Line Information
Parameter: SimCtrlC

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Control Run-Time Checks”

. “Model Configuration Parameters: Simulation Target” on page 13-2

2-92

Compile-time recursion limit for MATLAB functions

Compile-time recursion limit for MATLAB functions

Description

For compile-time recursion, control the number of copies of a function that are allowed in the
generated code. This parameter applies to MATLAB code in a MATLAB Function block, a Stateflow
chart, or a System object associated with a MATLAB System block. This parameter applies to the
model during simulation and code generation.

Category: Simulation Target > Advanced parameters

Settings
Default: 50

* To disallow recursion in the MATLAB code, set this parameter to 0.

* The default compile-time recursion limit is high enough for most recursive functions that require
compile-time recursion. If code generation fails because of the recursion limit, and you want
compile-time recursion, increase the limit. Alternatively, you can change your MATLAB code so
that the code generator uses run-time recursion.

Command-Line Information
Parameter: CompileTimeRecursionLimit
Type: integer

Value: valid value

Default: 50

See Also

More About

. “Code Generation for Recursive Functions”
. “Compile-Time Recursion Limit Reached”
. “Model Configuration Parameters: Simulation Target” on page 13-2

2-93

2 Ssimulink Configuration Parameters: Advanced

Enable implicit expansion in MATLAB functions

Description

Enable implicit expansion in code that is generated for MATLAB code that contains binary operations
and functions. This parameter applies to MATLAB code in a MATLAB Function block, a Stateflow
chart, or a System object associated with a MATLAB System block. This parameter also applies to the
model during simulation. Implicit expansion can change the output size of the binary operations and
functions. This option might cause extra code to be generated to accomplish implicit expansion.

Category: Simulation Target > Advanced parameters

Settings

Default: On

Y| On

Enables implicit expansion for code generation of MATLAB code that contains binary operations
and functions.

Ooff

Disables implicit expansion for code generation and model simulation of MATLAB code that
contains binary operations and functions. If implicit expansion is disabled, and the MATLAB code
requires implicit expansion, code generation and model simulation might generate errors.

Command-Line Information
Parameter: EnableImplicitExpansion
Value: 'on' | 'off'

Default: 'on'

See Also

Related Examples

2-94

“Compatible Array Sizes for Basic Operations”

“Generate Code With Implicit Expansion Enabled” (MATLAB Coder)
“Optimize Implicit Expansion in Generated Code” (MATLAB Coder)
“Model Configuration Parameters: Simulation Target” on page 13-2

Enable run-time recursion for MATLAB functions

Enable run-time recursion for MATLAB functions

Description

Allow recursive functions in code that is generated for MATLAB code that contains recursive
functions. This parameter applies to MATLAB code in a MATLAB Function block, a Stateflow chart, or
a System object associated with a MATLAB System block. This parameter also applies to the model
during simulation. Some coding standards, such as MISRA®, do not allow recursion. To increase the
likelihood of generating code that is compliant with MISRA C®, clear this option.

Category: Simulation Target > Advanced parameters

Settings

Default: On

Y1 On
Enables run-time recursion for code generation of MATLAB code that contains recursive
functions.
Off

Disables run-time recursion for code generation of MATLAB code that contains recursive
functions. If run-time recursion is disabled, and the MATLAB code requires run-time recursion,
code generation fails.

Command-Line Information
Parameter: EnableRuntimeRecursion
Value: 'on' | 'off'

Default: 'on'

See Also

More About

. “Code Generation for Recursive Functions”
. “Compile-Time Recursion Limit Reached”
. “Model Configuration Parameters: Simulation Target” on page 13-2

2-95

2 Ssimulink Configuration Parameters: Advanced

Dynamic memory allocation in MATLAB functions

2-96

Description

Use dynamic memory allocation (malloc) for variable-size arrays whose size (in bytes) is greater than
or equal to the dynamic memory allocation threshold. This parameter applies to MATLAB code in a
MATLAB Function block, a Stateflow chart, or a System object™ associated with a MATLAB System
block. This parameter applies to the model during simulation and code generation. This parameter
does not apply to:

* Input or output signals

» Parameters

* Global variables

» Discrete state properties of System objects associated with a MATLAB System block

Category: Simulation Target > Advanced parameters

Settings
Default: On (for GRT-based targets) | Off (for ERT-based targets)

Y1 On
Enables dynamic memory allocation.

Off
Disables dynamic memory allocation.

Dependency

Enables the Dynamic memory allocation threshold in MATLAB functions parameter.

Tips

* Code that uses dynamic memory allocation can be less efficient than code that uses static memory
allocation. Unless your model requires dynamic memory allocation, consider clearing this check
box.

+ If sufficient memory is not available to satisfy a memory allocation request, dynamic memory
allocation can fail. The code generator does not check memory allocation requirements. For
safety-critical systems, the recommended setting for this parameter is 0ff.

Command-Line Information
Parameter: MATLABDynamicMemAlloc
Value: 'on' | 'off'

Default: 'on'

Dynamic memory allocation in MATLAB functions

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting
No impact
No impact
Off

Off

. “Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block”
. “Model Configuration Parameters: Simulation Target” on page 13-2

2-97

2 Ssimulink Configuration Parameters: Advanced

Dynamic memory allocation threshold in MATLAB functions

2-98

Description

Specify a threshold for dynamic memory allocation. The code generator uses dynamic memory
allocation for variable-size arrays whose size (in bytes) is greater than or equal to the threshold. This
parameter applies to MATLAB code in a MATLAB Function block, a Stateflow chart, or a System
object associated with a MATLAB System block. This parameter applies to the model during
simulation and code generation. This parameter does not apply to:

* Input or output signals

* Parameters

* Global variables

» Discrete state properties of System objects associated with a MATLAB System block

Category: Simulation Target > Advanced parameters

Settings
Default: 65536

» To specify the threshold, set this parameter to a positive integer.
* To use dynamic memory allocation for all variable-size arrays, set this parameter to 0.

Dependency

Dynamic memory allocation in MATLAB functions enables this parameter.

Command-Line Information
Parameter: MATLABDynamicMemAllocThreshold
Type: integer

Value: integer value

Default: 65536

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Dynamic memory allocation threshold in MATLAB functions

See Also

Related Examples

. “Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block”
. “Model Configuration Parameters: Simulation Target” on page 13-2

2-99

2 Ssimulink Configuration Parameters: Advanced

Echo expressions without semicolons

2-100

Description

Enable run-time output in the MATLAB Command Window, such as actions that do not terminate with
a semicolon. This behavior applies to a model that contains MATLAB Function blocks, Stateflow
charts, or Truth Table blocks.

Category: Simulation Target

Settings
Default: On
Y On
Enables run-time output to appear in the MATLAB Command Window during simulation.

Off

Disables run-time output from appearing in the MATLAB Command Window during simulation.
Tip
* Ifyou disable run-time output, faster model simulation occurs.

Command-Line Information
Parameter: SFSimEcho

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off

Safety precaution No impact
See Also

Related Examples
. “Speed Up Simulation” (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 13-2

Enable continuous-time MATLAB functions to write to initialized persistent variables

Enable continuous-time MATLAB functions to write to
initialized persistent variables

Description

Enables continuous-time MATLAB functions to write to initialized persistent variables. If disabled,
continuous-time MATLAB functions can only initialize and read persistent variables. To initialize a
persistent variable, check that it is empty before assigning a value. For more information, see
“Initialize Persistent Variables in MATLAB Functions”.

Category: Simulation Target

Settings
Default: Off

I off
Continuous-time MATLAB functions can only initialize and read persistent variables.

|7On

Continuous-time MATLAB functions can write to initialized persistent variables.

Tips

* Enable this configuration to ensure legacy functionality in models designed in releases older than
R2017h.

Command-Line Information

Parameter: LegacyBehaviorForPersistentVarInContinuousTime
Value: "on" | "off" |

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Initialize Persistent Variables in MATLAB Functions”

2-101

2 Ssimulink Configuration Parameters: Advanced

. “Model Configuration Parameters: Simulation Target” on page 13-2

2-102

Allow setting breakpoints during simulation

Allow setting breakpoints during simulation

Description

Enables adding breakpoints in MATLAB Function blocks, Stateflow charts, State Transition blocks,
and Truth Table blocks during simulation.

Category: Simulation Target

Settings

Default: Off

I off

Model does not support adding breakpoints in MATLAB Function blocks, Stateflow charts, State
Transition blocks, or Truth Table blocks during simulation. The debugger for these blocks is
enabled only when you add breakpoints before running your model. If there are no breakpoints
when simulation begins, the running time is optimized but the model does not check for new
breakpoints that you add during simulation.

|7On

Model supports adding breakpoints in MATLAB Function blocks, Stateflow charts, State
Transition blocks, and Truth Table blocks during simulation. The debugger for these blocks is
always enabled. You can pause the simulation, add breakpoints, and resume the simulation, but
the model runs slower than when debugging is disabled.

Tips

Simulink does not save the setting for this configuration parameter with your model. You must re-
enable this configuration parameter every time you open your model.

Enabling this configuration parameter has significant performance impact on models that contain
multiple MATLAB Function blocks, Stateflow charts, State Transition blocks, or Truth Table
blocks.

Command-Line Information
Parameter: SFSimEnableDebug
Value: 'on' | 'off' |

Default: 'off"'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off

2-103

2 Ssimulink Configuration Parameters: Advanced

Application Setting
Safety precaution No impact
See Also

Related Examples

. “Debug MATLAB Function Blocks”

. “Set Breakpoints to Debug Charts” (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 13-2

2-104

Reserved names

Reserved names

Description

Enter the names of variables or functions in the generated code that match the names of variables or
functions specified in custom code for a model that contains MATLAB Function blocks, Stateflow
charts, or Truth Table blocks.

Category: Simulation Target

Settings
Default: {}

This action changes the names of variables or functions in the generated code to avoid name conflicts
with identifiers in custom code. Reserved names must be shorter than 256 characters.

Tips
» Start each reserved name with a letter or an underscore to prevent error messages.
* Each reserved name must contain only letters, numbers, or underscores.
» Separate the reserved names using commas or spaces.
* You can also specify reserved names by using the command line:
config param object.set param('SimReservedNameArray', {'abc', 'xyz'})

where config param_object is the object handle to the model settings in the Configuration
Parameters dialog box.

Command-Line Information
Parameter: SimReservedNameArray
Type: cell array of character vectors or string array

Value: any reserved names shorter than 256 characters
Default: {}

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

2-105

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples
. “Model Configuration Parameters: Simulation Target” on page 13-2

2-106

Enable memory integrity checks

Enable memory integrity checks

Description

Detects violations of memory integrity while building MATLAB Function blocks. Stops simulation with
a diagnostic message.

Category: Simulation Target

Settings

Default: On for simulation

On for simulation

Detect violations of memory integrity while simulating MATLAB Function blocks in normal and
accelerator modes. Stops simulation and displays a diagnostic message.

off
Does not detect violations of memory integrity while building MATLAB Function blocks.
Always on

Detect violations of memory integrity while building MATLAB Function blocks for all simulation
modes. Stops simulation and displays a diagnostic message.

Caution Without these checks, violations result in unpredictable behavior.

Tips

* The most likely cause of memory integrity issues is accessing an array out of bounds.

» Disable these checks only if you are sure that all array bounds and dimension checking is
unnecessary.

Command-Line Information
Parameter: SimIntegrity

Value: 'on' | 'off' |'alwaysOn'
Default: 'on’

Recommended Settings

Application Setting

Debugging On

Traceability No impact
Efficiency No recommendation
Safety precaution Always on

2-107

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples
. “Control Run-Time Checks”

. “Model Configuration Parameters: Simulation Target” on page 13-2

2-108

Generate typedefs for imported bus and enumeration types

Generate typedefs for imported bus and enumeration types

Description

Determines typedef handling and generation for imported bus and enumeration data types in
Stateflow and MATLAB Function blocks.

Category: Simulation Target

Settings

Default: Off

Y1 On
The software will generate its own typedefs for imported bus and enumeration types.

Off

The software will not generate its own typedefs for imported bus and enumeration types, and will
use definitions in the included header file. This setting requires you to include header files in
Configuration Parameters, which can be done by navigating to the Simulation Target pane.

Tips

» This selection applies if you are using imported bus or enumeration data types in Stateflow and
MATLAB Function blocks.

Command-Line Information

Parameter: SimGenImportedTypeDefs
Value: 'on' | 'off'
Default: 'off'

See Also

Related Examples

. “Model Configuration Parameters: Simulation Target” on page 13-2

2-109

2 Ssimulink Configuration Parameters: Advanced

Use local custom code settings (do not inherit from main
model)

2-110

Description

Specify if a library model can use custom code settings that are unique from the main model.

Category: Simulation Target

Settings
Default: On

Y| On

Enables a library model to use custom code settings that are unique from the main model.

Off
Disables a library model from using custom code settings that are unique from the main model.

Dependency

This parameter only applies to MATLAB Function blocks, Stateflow charts, or Truth Table blocks in
the library model.

Command-Line Information

Parameter: SimUselLocalCustomCode
Value: 'on' | 'off"'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
. Including Custom C Code (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 13-2

Allow symbolic dimension specification

Allow symbolic dimension specification

Description

Specify whether Simulink propagates dimension symbols throughout the model and preserves these
symbols in the propagated signal dimensions.

Category: Diagnostics

Settings
Default: On

41 On

Simulink propagates symbolic dimensions throughout the model and preserves these symbols in
the propagated signal dimensions. If you have an Embedded Coder license, these symbols go into
the generated code.

Off

Simulink does not propagate symbolic dimensions throughout the model nor preserve these
symbols in propagated signal dimensions.

Command-Line Information
Parameter: AllowSymbolicDim
Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

. “Implement Symbolic Dimensions for Array Sizes in Generated Code” (Embedded Coder)
. “Model Configuration Parameters: Diagnostics” on page 9-2

2-111

2 Ssimulink Configuration Parameters: Advanced

Enable decoupled continuous integration

Description

Removes the coupling between continuous and discrete rates. In some cases, unnecessary coupling
between the two can cause the integration to be limited by the fastest discrete rate in the model. This
coupling might slow down the model.

Category: Solver

Settings
Default: Off
v On
Enable the solver to decouple continuous integration from discrete rates.

I off

Preserve the coupling between continuous integration and discrete rates.
Tip
Enabling this parameter can improve simulation speed when:

* A variable step solver is used.
* The model has both continuous and discrete rates.
* The fastest discrete rate is relatively smaller than the maximum step size set by the solver.

Command-Line Information
Parameter: DecoupledContinuousIntegration

Value: 'on' | 'off'
Default: 'of '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

2-112

Enable decoupled continuous integration

See Also

Related Examples
. “Solver Pane” on page 14-2

2-113

2 Ssimulink Configuration Parameters: Advanced

Enable minimal zero-crossing impact integration

2-114

Reduces the impact of zero-crossing on the integration of continuous states.

Settings
Default: Off
Y On
The solver tries to reduce the impact of zero-crossings on the integration of continuous states

Off

The solver won't try to reduce the impact of zero-crossings on the integration of continuous states

Dependencies

* Solver Type must be set to Variable-Step.
Tips

Command-Line Information
Parameter: MinimalZcImpactIntegration

Value: 'on' | 'off'
Default: 'of '

Recommended Settings

Application Setting
Debugging off
Traceability off
Efficiency on

Safety precaution No impact

Detect ambiguous custom storage class final values

Detect ambiguous custom storage class final values

Description

Select the diagnostic action to take when your model contains a Reusable custom storage class that
has more than one endpoint. An endpoint is a usage of a Reusable custom storage class with no
other downstream usages.

If your model contains a Reusable custom storage class that does not have a unique endpoint, the
run-time environment must not use the variable value because the value is ambiguous. For example,
in this model, the final value of RCSC 1 is ambiguous because it has two endpoints. If you remove the
specification from the signal line that leaves the Sum block or from the signal line that leaves the top
Bias block, the Reusable custom storage class has one endpoint.

£ RCSC 1 3:: > u -ERCSC 1

./ ERCSC_1 >

Settings
Default: warning

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tip
If the run-time environment must use the final value of the signal with the Reusable custom storage

class specification, set this parameter to error. Remove one of the Reusable custom storage classes
so that the Reusable custom storage class has a unique endpoint.

Command-Line Information
Parameter:RCSCObservableMsg
Value: 'none' | ‘'warning' | 'error!’

2-115

2 Ssimulink Configuration Parameters: Advanced

Default: 'none'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples

. Data Validity Diagnostics on page 6-2

. “Specify Buffer Reuse for Signals in a Path” (Embedded Coder)

. “Model Configuration Parameters: Code Generation Optimization” (Embedded Coder)

2-116

Detect non-reused custom storage classes

Detect non-reused custom storage classes

single D1 single D1
€Y
In1

single D1 0:1 single D1
€Y

In2

Description

Select the diagnostic action to take when your model contains a Reusable custom storage class that
the code generator cannot reuse with other uses of the same Reusable custom storage class. The
default behavior of the parameter settings varies with the presence of Reusable custom storage
classes and referenced models. If the code generator cannot change the block execution order to
enable reuse or the conditional execution of some blocks is incompatible with reuse, the code
generator might not implement the reuse specification. The generated code will likely contain
additional global variables.

For example, in this model, the code generator cannot reuse the variable Y to hold the outputs of In2,
Gain, and Gain2 because Gain executes before Gain2. The generated code contains an extra
variable to hold the Gain output. The red numbers to the top right of the blocks indicate the
execution order.

Gain). ‘III';
L 4+ 0 single D1 :3 single D1 0:4

S +£Y —

Add Gainz outt

Gain1

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error message.

When there are Reusable custom storage classes and referenced models present, the parameter
settings are:

None
Simulink software generates a message for you to set the parameter to Error.

2-117

2 Ssimulink Configuration Parameters: Advanced

2-118

Warning
Simulink software generates a message for you to set the parameter to Error
Error

If Reusable custom storage classes can be combined Simulink software generates code. If not, it
generates an error.

Tip

If you do not want the generated code to contain additional global variables because of a Reusable
custom storage class specification that the code generator cannot honor, set this parameter to error.
Remove the Reusable custom storage classes from the signal lines in the error message.

Command-Line Information
Parameter: RCSCRenamedMsg
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. Data Validity Diagnostics on page 6-2

. “Specify Buffer Reuse for Signals in a Path” (Embedded Coder)

. “Model Configuration Parameters: Code Generation Optimization” (Embedded Coder)

Combine output and update methods for code generation and simulation

Combine output and update methods for code generation and
simulation

Description

When output and update code is in one function in the generated code, force the simulation execution
order to be the same as the code generation order. For certain modeling patterns, setting this
parameter prevents a potential simulation and code generation mismatch. Setting this parameter
might cause artificial algebraic loops. If your model requires this parameter, Simulink generates a
warning of a potential simulation and code generation mismatch during the model build. The warning
states that your model

...references a model that has an inport that is used during update only but
the model combines output and update methods. This may result in a mismatch
between simulation and code generation results

Settings
Default: Off

Y1 On

Forces simulation execution order to be the same as code generation order when output and
update code are in one function. You might get the preceding warning if your model meets these
conditions:

* The referenced model has a single output/update function, uses function prototype control, or
generates C++ code.

* Areferenced model input connects only to blocks that do not use their input values to
calculate their output values during the same time step, such as Delay or Integrator blocks.
The input port is not associated with a Function-Call Subsystem port in the referenced model.

» The referenced model uses a shared global resource such as a global data store.

Off

For the preceding modeling pattern, the simulation execution order might be different than the
code generation order. If the execution order is different, an answer mismatch between
simulation and code generation might occur.

Tips

Selecting this parameter might cause artificial algebraic loops in simulation. Select it only if you get a
warning about a possible simulation versus code generation mismatch, and you plan to generate
code.

Command-Line Information
Parameter: ForceCombineQutputUpdateInSim
Value: 'on' | 'off'

2-119

2 Ssimulink Configuration Parameters: Advanced

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Artificial Algebraic Loops”
. “Model Configuration Parameters: Diagnostics” on page 9-2

2-120

Include custom code for referenced models

Include custom code for referenced models

Description

Use custom code for referenced model simulation (SIM) target build for accelerator mode.

Category: Model Referencing

Settings

Default: Off

I off
Ignore custom code for model reference accelerator simulation.
¥ On
Use custom code with Stateflow or with MATLAB Function blocks during model reference

accelerator simulation.

Tips

* Caution Using custom code for referenced models in accelerator mode can produce different
results than if you simulate the model without using the custom code. If the custom code includes
declarations of structures for buses or enumerations, the SIM target generation fails if the build
results in duplicate declarations of those structures. Also, if the custom code uses a structure that
represents a bus or enumeration, you might get unexpected simulation results.

* Use the Configuration Parameters > Simulation Target pane to specify the custom code file.

Command-Line Information
Parameter: SupportModelReferenceSimTargetCustomCode

Value: 'on' | 'off'
Default: 'of '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

2-121

2 Ssimulink Configuration Parameters: Advanced

Hardware acceleration

2-122

Description

Turn hardware acceleration off or select the level of hardware acceleration in simulation. Hardware
acceleration allows you to leverage SIMD instructions to improve simulation performance.

Hardware acceleration does not leverage SIMD instructions when LCC is configured as the MEX
compiler.

Settings

Default: Leverage generic hardware (Faster, no rebuild)

off
Turn off hardware acceleration.
Leverage generic hardware (Faster, no rebuild)

Leverage SIMD instructions for hardware generic to Simulink system requirements. This option
does not require you to rebuild the model for simulation when the host computer changes.

Leverage native hardware (Fastest, rebuild allowed)

Leverage SIMD instructions for hardware native to the host computer for best simulation
performance. This option may require rebuilding the model for simulation when the host
computer changes.

Command-Line Information
Parameter: SimHardwareAcceleration
Value: 'off' | 'generic' | 'native’
Default: 'generic’

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

Related Examples

. “Model Configuration Parameters: Simulation Target” on page 13-2

Behavior when pregenerated library subsystem code is missing

Behavior when pregenerated library subsystem code is
missing

Description

When you generate code for a model that contains an instance of a reusable library subsystem with a
function interface, specify whether or not to display a warning or an error when the model cannot use
pregenerated library code or pregenerated library code is missing.

Settings

Default: warning

none

If pregenerated library code is missing, Simulink software does not display a warning or an error.
The code generator generates code for a reusable library subsystem that does not contain
function interfaces. The generated code for the reusable library subsystem is in the slprj/
target/ sharedutils folder.

warning

If pregenerated library code is missing, Simulink software displays a warning. The code
generator generates code for a reusable library subsystem that does not contain function
interfaces. The generated code for the reusable library subsystem is in the slprj/target/
_sharedutils folder.

error

Simulink software displays an error message. The code generator does not generate code.
Tip
To use pregenerated library code, before generating code for the model, generate code for the library.

Command-Line Information

Parameter: PregeneratedLibrarySubsystemCodeDiagnostic
Value: 'none' | ‘'warning' | 'error!’
Default: 'warning'

Recommended Settings

Application Setting
Debugging error,warning
Traceability No impact
Efficiency No impact
Safety precaution error

2-123

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples
. “Library-Based Code Generation for Reusable Library Subsystems” (Embedded Coder)

2-124

Arithmetic operations in variant conditions

Arithmetic operations in variant conditions

Description

Select the diagnostic action to take if Simulink software detects arithmetic operations (+, -, *, idivide,
rem) in variant conditions specified within variant blocks.

Category: Diagnostics

Settings

Default: error

Note For models created prior to R2019a, the default value is warning.

none

When Simulink software detects arithmetic operations in variant conditions of a Variant block
with the Variant activation time option set to code compile, the software takes no action.

warning

When Simulink software detects arithmetic operations in variant conditions of a Variant block
with the Variant activation time option set to code compile, the software displays a warning.

error

When Simulink software detects arithmetic operations in variant conditions of a Variant block
with the Variant activation time option set to code compile, the software displays a warning
and terminates the simulation.

Note It is recommended to use the default value error, as there could be a difference in behavior

between simulation and code generation. For example, if you use the conditionV * W == 10ina
Variant Source block and request that the block produces preprocessor conditions in the Simulink
Coder generated code. This results in generated C code containing "#if V*W == 10". Simulink

uses int32 types for V and W, whereas the integer types used by the compiler are implementation
dependent. So, for large values of V and W, there could be a difference in behavior between simulation
and code generation. If the model uses arithmetic operations, you must consider removing their
usage rather than relaxing the diagnostic.

Command-Line Information

Parameter: ArithmeticOperatorsInVariantConditions
Value: 'none' | 'warning' | 'error’

Default: 'error’

Recommended Settings

Application Setting
Debugging No impact

2-125

2 Ssimulink Configuration Parameters: Advanced

2-126

Application
Traceability
Efficiency

Safety precaution

See Also

Related Examples
. Solver Diagnostics on page 9-2

Setting

No impact
No impact
No impact

Variant activation time inherited from Simulink.VariantControl

Variant activation time inherited from Simulink.VariantControl

Description

Select the diagnostic action to take if Simulink software detects variant blocks with activation time
set to inherit from Simulink.VariantControl but no variant control variables of type
Simulink.VariantControl.

Category: Diagnostics

Settings
Default: warning

none

When Simulink software detects variant blocks with activation time set to inherit from
Simulink.VariantControl but no variant control variables of type
Simulink.VariantControl, the software takes no action.

warning

When Simulink software detects variant blocks with activation time set to inherit from
Simulink.VariantControl but no variant control variables of type
Simulink.VariantControl, the software displays a warning.

error

When Simulink software detects variant blocks with activation time set to inherit from
Simulink.VariantControl but no variant control variables of type
Simulink.VariantControl, the software terminates the simulation and displays an error
message.

Command-Line Information
Parameter: InheritVATfromSVC
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

2-127

2 Ssimulink Configuration Parameters: Advanced

See Also

Related Examples
. Solver Diagnostics on page 9-2

2-128

FMU Import blocks

FMU Import blocks

Description

When the debug execution mode is enabled, FMU binaries are executed in a separate process.
Executing FMU binaries in a separate process protects MATLAB processes. For example, the debug
execution mode can prevent a segmentation violation in third-party FMU binaries from crashing

MATLAB.
Settings
Default: Off

Y On

Enable debug execution mode for FMU Import blocks. This setting executes FMU binaries in a
separate process.

Off

Disable debug execution mode for FMU Import blocks. This setting executes FMU binaries in the
same process as the MATLAB process.

Command-Line Information
Parameter:DebugExecutionForFMUViaOutOfProcess

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

2-129

2 Simulink Configuration Parameters: Advanced

Variant condition mismatch at signal source and destination

2-130

Description

When you generate code using Embedded Coder, select the diagnostic action to take if the software
detects variant-related modeling issues that may result in unused Simulink variables in the generated
code. Unused variables are created when there is discrepancy in variant conditions that propagate
between the source and the destination blocks while compiling the model. For more on discrepancies,
see “Prevent Creation of Unused Variables for Lenient Variant Choices” on page 2-132, or “Prevent
Creation of Unused Variables for Unconditional and Conditional Variant Choices” on page 2-135.

Category: Diagnostics

Settings

Default: none

none

When Simulink software detects a discrepancy in variant conditions that propagate between the
source and the destination blocks with the Variant activation time option set to code
compile, the software takes no action.

warning

When Simulink software detects a discrepancy in variant conditions that propagate between the
source and the destination blocks with the Variant activation time option set to code
compile, the software displays a warning and continues with the simulation. To suppress the
warning and continue with simulation, click Suppress.

error
When Simulink software detects a discrepancy in variant conditions that propagate between the

source and the destination blocks with the Variant activation time option set to code
compile, the software displays an error and terminates the simulation.

Command-Line Information
Parameter: VariantConditionMismatch
Value: 'none' | 'warning' | 'error’'
Default: 'none’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Variant condition mismatch at signal source and destination

See Also

Related Examples

. “Prevent Creation of Unused Variables for Lenient Variant Choices” on page 2-132
. “Prevent Creation of Unused Variables for Unconditional and Conditional Variant Choices” on
page 2-135

2-131

2 Ssimulink Configuration Parameters: Advanced

Prevent Creation of Unused Variables for Lenient Variant
Choices

This example shows how to prevent Simulink® models from creating unused variables in generated
code when the variant condition of the source block is more lenient than the variant condition of the
destination block. Preventing the creation of unused variables in generated code increases the
likelihood of generating C code that is compliant with Rule 2.2 of the MISRA C:2012 guidelines.

Model Description

In this model, the source of the highlighted signal is the EvIinB block. The destination of the signal is
VariantSource3. The variant condition of EvinB is A > 0, which is more lenient than the variant
condition A > 0 && B == 1 of VariantSource3.

@ :
{—‘ . Variant Conditions Legend: X
i Ll G5 [show generated code conditions I:l
e e
— |
(D, » uintle o
In2 VariantSource3 v A<D Global
vil A<=0 Global
3 vi2 A>0|[{A<0.. Global
e v:3 A0 Global
—»1
1 outt—»(2) vid A~=0||B~=1 Global
— »l2 w5 B==1 Global
2 vb B~=1 Global
StoreOnArray
v Print Help
L 22— uintig b
& —

EvinB }» b
u

Switch inside EvinB

Components of EvinB

Generate C Code Using Embedded Coder
Suppose that the value of A is 1, and the value of B is 0.

When you generate code using Embedded Coder™, the variant condition of EvinB, A > 0, evaluates
to true, and the condition of VariantSource3, A > 0 && B == 1, evaluates to false. However,
code is generated for all variant choices. In the generated code, the variable rtb Switch is created.
This variable corresponds to the Switch block that is located inside the EvInB block. rtb_Switch is
used only when A > 0 && B == 1 evaluates to true. In this example, since A > 0 && B ==
evaluates to false, rtb_Switch remains unused.

2-132

Prevent Creation of Unused Variables for Lenient Variant Choices

mif & B g 1= 1
Boalean_T reh_VariantMerge_For_Variant_So;
sondif

wif A >0

boolean T FEEISETEN:

mondaf
Fif A<D &L B 1
L rtb_WariantMerge_For_Variant_So = rtU.Inl;
54 gelif & > 0
B4 rib_Switch [{{1reu.In2) &8 riU.In3] || rEw.Inl);

Famidaf

wif A > 0 SE B == 1
rib_WariantMerge_For_Variang_So = rib _Switch;
sLif B - -

relif B rtb_Switch is used only when A=0

& B==1 evaluates to true.

g3 rEB_VariantMerge _For _Variant_Se = false;

Fondlf

To avoid modeling issues that may create unused variables in generated code, select Model Settings
> Diagnostics. Expand the Advanced parameters section and scroll to the bottom of the dialog box.
In the Modeling issues related to variants section, set the Variant condition mismatch at
signal source and destination parameter to warning or error. Setting this parameter warns you
about unused variables during code generation.

2-133

2 Ssimulink Configuration Parameters: Advanced

|| \QITINnE ULLPUL diidg Uphadie TIEWos 101 COue generduan dind SsimuEuon

Solver
Data Import/Export Enable debug execution mode for:
Math and Data Types [] FMU Import blocks

|» Diagnostics |

Hardware Implementation

Model Referencing
Simulation Target Arithmetic operations in variant conditions: error | b

Modeling issues related to variants

* Code Generation IVariant condition mismatch at signal source and destinatinn:l
Coverage
» HDL Code Generation

none

waming
error

See Also
* “Variant condition mismatch at signal source and destination” on page 2-130

* “Prevent Creation of Unused Variables for Unconditional and Conditional Variant Choices” on
page 2-135

2-134

Prevent Creation of Unused Variables for Unconditional and Conditional Variant Choices

Prevent Creation of Unused Variables for Unconditional and
Conditional Variant Choices

This example shows how to prevent Simulink® models from creating unused variables in generated
code when the variant condition of the source block is unconditional and the variant condition of the
destination block is conditional. Preventing the creation of unused variables in generated code
increases the likelihood of generating C code that is compliant with Rule 2.2 of the MISRA C:2012
guidelines.

Model Description

In this model, the Variant Sink block has the variant condition expressionsV == land V == 2.
Cuit1
Linear
+
A >
Add p——
Hbsystem Variant Sink o b 1 —..
Ot
Monlinear
Generate C Code Using Embedded Coder
Suppose that the value of V is set to 3.
When you generate code using Embedded Coder™, the variant condition expressions V. == 1 and V

== 2 evaluate to false. Simulink disables all the blocks connected to the input and output stream of
the Variant Sink block. However, code is generated for all the variant choices in the model.

Variant Conditions Legend: source_is_always_avaia.. X

[show generated code conditions

v.0 Global

E— :
II ;) v 2 Global
+ 2p

Subsystemn

= =
[T]

Print Help

2-135

2 Ssimulink Configuration Parameters: Advanced

A variable Add is created in the generated code. During code compilation, this variable remains
unused since both choices evaluate to false.

* Model step functien *#

void source_1s_always_avalable step(vold)

real T Add;

Add = source_is_always_avaiable_U.Inl ¢ sin
({source_is_always_avaiable _M->Timing.tfal):

Variable Add is used only if
V==1 or V==2 evaluates to true.

crataFil c81x/Discrete Friter

avaiable _DwW.DiscreteFilter_states_d = Add - 9.5 *
source_is_always_avaiable DW.DiscreteFilter_states_d;

source_1%_always_avaiable ¥.0utl =

source_is_always_avaiable_DW.DiscreteFilter_states_d;

source_is_always

source_1%_always_avaiable Dw.DiscreteFilver_tmp = lookl_binlepe| S,
source_is_always_avaiabl_ConstP.LookupTable_bpélData,
source_15_always_avalabl_ConstP.LookupTable_tableData, 4U) - 8.5 *
source_is_always_avaiable_DW.DiscreteFilter_states;

To avoid modeling issues that may create unused variables in generated code, select Model Settings
> Diagnostics. Expand the Advanced parameters section and scroll to the bottom of the dialog box.
In the Modeling issues related to variants section, set the Variant condition mismatch at
signal source and destination parameter to warning or error. Setting this parameter warns you
about unused variables during code generation.

Sql || LITINNE ULILPUL diiag Upadie TIeEmos 100 Lous gensiduan did simuduon
Olver

Data Import/Export Enable debug execution mode for:
Math and Data Types

|» Diagnostics
Hardware Implementation
Model Referencing

[] FMU Import blocks

Modeling issues related to variants

Simulation Target Arithmetic operations in variant conditions: error | -
» Code Generation IVariant condition mismatch at signal source and destinatinn:llnone | - |
Coverage
» HDL Code Generation waming
arror 3
See Also

* “Variant condition mismatch at signal source and destination” on page 2-130

2-136

Prevent Creation of Unused Variables for Unconditional and Conditional Variant Choices

* “Prevent Creation of Unused Variables for Lenient Variant Choices” on page 2-132

2-137

2 Ssimulink Configuration Parameters: Advanced

Variant configuration not used by top model

2-138

Description

If your model has predefined variant configurations, select the diagnostic action to take if Simulink
detects that a top-level model does not use this model for one of these configurations. This setting
helps you to verify that this model is used only for its tested variant configurations.

Settings

Default: warning

none

When Simulink detects during model compilation or Variant Manager activation that a top-level
model does not use this model for any of its published variant configurations, the software takes
no action.

warning

When Simulink detects during model compilation or Variant Manager activation that a top-level
model does not use this model for any of its published variant configurations, the software
displays a warning and continues with the simulation. To suppress the warning and continue with
simulation, click Suppress.

error

When Simulink detects during model compilation or Variant Manager activation that a top-level
model does not use this model for any of its published variant configurations, the software
displays an error and terminates the simulation.

Command-Line Information
Parameter: VariantConfigNotUsedByTopModel
Value: 'none' | 'warning' | 'error’

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

More About

. “Variant Manager for Simulink” on page 21-2

Data Import/Export Parameters

3 Data Import/Export Parameters

Model Configuration Parameters: Data Import/Export

3-2

The Data Import/Export category includes parameters for configuring input data for simulation (for
example, for Inport blocks) and output data (for example, from Outport blocks). The parameters allow
you to import input signal and initial state data from a workspace and export output signal and state
data to the MATLAB workspace during simulation. This capability allows you to use standard or
custom MATLAB functions to generate a simulated system's input signals and to graph, analyze, or

otherwise postprocess the system's outputs.

1 Specify the data to load from a workspace before simulation begins.

2 Specify the data to save to the MATLAB workspace after simulation completes.

Parameter

Description

“Input” on page 3-4

Loads input data from a workspace before the
simulation begins.

“Initial state” on page 3-6

Loads the model initial states from a workspace
before simulation begins.

“Time” on page 3-8

Saves simulation time data to the specified
variable during simulation.

“States” on page 3-10

Saves state data to the specified variable during a
simulation.

“Output” on page 3-12

Saves signal data to the specified variable during
simulation.

“Final states” on page 3-14

Saves the model states at the end of a simulation
to the specified variable.

“Format” on page 3-16

Select the data format for saving states, output,
and final states data.

“Limit data points to last” on page 3-18

Log only the last n data points for outputs and
states.

“Decimation” on page 3-20

Specify decimation factor, n, for output and states
logging such that only every n points are logged.

“Save final operating point” on page 3-24

At the end of a simulation, Simulink saves the
complete set of states of the model, including
logged states.

“Signal logging” on page 3-26

Globally enable or disable signal logging for the
model.

“Data stores” on page 3-28

Globally enable or disable logging of Data Store
Memory block variables for the model.

“Log Dataset data to file” on page 3-30

Log data to MAT-ile.

“Output options” on page 3-32

Select options for generating additional output
signal data for variable-step solvers.

“Refine factor” on page 3-34

Specify how many points to generate between
time steps to refine the output.

Model Configuration Parameters: Data Import/Export

Parameter

Description

“Output times” on page 3-35

Specify times at which Simulink software should
generate output in addition to, or instead of, the
times of the simulation steps taken by the solver
used to simulate the model.

“Single simulation output” on page 3-37

Specify whether to return simulation data as a
single Simulink.SimulationOutput object.

“Logging intervals” on page 3-39

Set intervals for logging

“Record logged workspace data in Simulation
Data Inspector” on page 3-41

Specify whether to send logged data to the
Simulation Data Inspector when a simulation
pauses or completes.

These configuration parameters are in the Advanced parameters section.

Parameter

Description

“Dataset signal format” on page 2-50

Format for Dataset elements.

“Stream To Workspace blocks” on page 2-54

Specify whether data logged using To Workspace
blocks streams to the Simulation Data Inspector.

See Also

Related Examples
. Importing Data from a Workspace

. “Export Simulation Data”

. “Export Signal Data Using Signal Logging’
. “Load Signal Data for Simulation”

. “Save Run-Time Data from Simulation”

1

3-3

3 Data Import/Export Parameters

Input

3-4

Description

Loads input data from a workspace for a simulation.

Category: Data Import/Export

Settings

Default: Off, [t,u]

|7On

Loads data from a workspace.

Specify a MATLAB expression for the data to be loaded into the model from a workspace. The
Simulink software resolves symbols in the expression as described in “Symbol Resolution”.

See “Load Data to Root-Level Input Ports” for information.

The Input parameter does not load input data from a data dictionary. When a model uses a data
dictionary and you disable model access to the base workspace, the Input parameter still
accesses simulation input variables in the base workspace.

I off

Does not load data from a workspace.

Tips

If you use a Simulink.SimulationData.Dataset object that includes a
matlab.io.datastore.SimulationDatastore object as an element, then the data stored in
persistent storage is streamed in from a file. For more information, see “Load Big Data for
Simulations”.

You must select the Input check box before entering input data.

Simulink software linearly interpolates or extrapolates input values as necessary if the
Interpolate data option is selected for the corresponding Inport.

The use of the Input box is independent of the setting of the Format list on the Data Import/
Export pane.

For more information about using the Input parameter to load signal data to root-level inputs, see
“Load Data to Root-Level Input Ports”.

Programmatic Use
Parameter: LoadExternalInput
Value: 'on' | 'off'

Default: 'off'

Parameter: ExternalInput
Type: character vector

Input

Value: any valid value
Default: '[t,u]"’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Load Data to Root-Level Input Ports”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

3 Data Import/Export Parameters

Initial state

3-6

Description

Loads the model initial states from a workspace before simulation begins.

Category: Data Import/Export

Settings

Default: Off xInitial

|7On

Simulink software loads initial states from a workspace.

Specify the name of a variable that contains the initial state values, for example, a variable
containing states saved from a previous simulation.

Use the structure or structure-with-time option to specify initial states if you want to accomplish
any of the following:

* Associate initial state values directly with the full path name to the states. This eliminates
errors that could occur if Simulink software reorders the states, but the initial state array is
not correspondingly reordered.

* Assign a different data type to each state's initial value.
* Initialize only a subset of the states.
» Initialize the states of a top model and the models that it references

See “Load State Information” for more information.

The Initial state parameter does not load initial state data from a data dictionary. When a model
uses a data dictionary and you disable model access to the base workspace, the Initial State
parameter still has access to resolve variables in the base workspace.

I off

Simulink software does not load initial states from a workspace.

Tips

The initial values that the workspace variable specifies override the initial values that the model
specifies (the values that the initial condition parameters of those blocks in the model that have
states specify).

Selecting the Initial state check box does not result in Simulink initializing discrete states in
referenced models.

Avoid using an array for an initial state. If the order of the elements in the array does not match
the order in which blocks initialize, the simulation can produce unexpected results. To promote
deterministic simulation results, use the InitInArrayFormatMsg diagnostic default setting of
warning or set the diagnostic to error.

Initial state

Instead of array format for the initial state, consider using a
Simulink.SimulationData.Dataset object, structure, structure with time, or an operating
point.

* Ifyou use a format other than Dataset, you can convert the logged data to Dataset format.
Converting the data to Dataset makes it easier to postprocess with other logged data. For more
information, see “Dataset Conversion for Logged Data”.

+ Ifyouuse Dataset format, you can specify the discrete state bus type by setting the state label to
DSTATE NVBUS (nonvirtual bus) or DSTATE VBUS (virtual bus).

Programmatic Use

Parameter: LoadInitialState

Value: 'on' | 'off'

Default: 'off'

Parameter: InitialState

Type: variable (character vector) or vector
Value: any valid value

Default: 'xInitial'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. Importing Data from a Workspace

. “Save Block States and Simulation Operating Points”
. “Dataset Conversion for Logged Data”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

3 Data Import/Export Parameters

Time

3-8

Description
Saves simulation time data to the specified variable during simulation.

Category: Data Import/Export

Settings
Default: On, tout

IFOn

Simulink software exports time data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store time data. See “Export Simulation Data”
for more information.

I off
Simulink software does not export time data to the MATLAB workspace during simulation.

Tips
* You must select the Time check box before entering the time variable.

* Simulink software saves the output to the MATLAB workspace at the base sample rate of the
model. Use a To Workspace block if you want to save output at a different sample rate.

* Additional parameters includes parameters for specifying a limit on the number of data points
to export and the decimation factor.

* To specify an interval for logging, use the Logging intervals parameter.

* Ifyou use a format other than Dataset, you can convert the logged data to Dataset format.
Converting the data to Dataset makes it easier to postprocess with other logged data. For more
information, see “Dataset Conversion for Logged Data”.

* Do not use a variable name that is the same as a Simulink.SimulationOutput object function
name or property name.

Programmatic Use
Parameter: SaveTime
Value: 'on' | 'off'
Default: 'on'

Parameter: TimeSaveName
Type: character vector
Value: any valid value
Default: 'tout'

Time

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

. “Export Simulation Data”
. “Data Format for Logged Simulation Data”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

Setting

No impact

No impact

No recommendation
No recommendation

3-9

3 Data Import/Export Parameters

States

3-10

Description
Saves states data to the specified variable in the MATLAB workspace.

Category: Data Import/Export

Settings
Default: Off, xout

¥ on
Log states data to the MATLAB workspace.

Specify the name of the variable used to store the logged states data. See “Save Block States and
Simulation Operating Points” for more information.

I off
Do not log states data.

Tips
» Specify the format for the logged states data using the Format parameter.

* To log fixed-point states data, log states data using the Dataset format.

* When you log states data using the Dataset format, states data streams to the Simulation Data
Inspector during simulation.

* Dataset format does not support:

* Logging states during rapid accelerator simulation.
* Logging states inside a function-call subsystem.
* Code generation.

» The states logging variable is empty when you enable states logging for a model that has no
states.

* Ifyoulog states data in a format other than Dataset, you can convert the logged data to
Dataset format. Converting the data to Dataset makes it easier to post process with other
logged data. For more information, see “Dataset Conversion for Logged Data”.

* Ifyoulog states data in Structure with time format or in Array format while also logging
time, select the Record logged workspace data in Simulation Data Inspector parameter to
view the data in the Simulation Data Inspector after simulation.

Programmatic Use
Parameter: SaveState
Value: 'on' | 'off'
Default: 'off'

Parameter: StateSaveName

States

Type: character vector
Default: 'xout'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. “Save Block States and Simulation Operating Points”
. “Comparison of Signal Loading Techniques”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-11

3 Data Import/Export Parameters

Output

3-12

Description
Saves data for signals connected to root-level Outport blocks to the specified MATLAB variable.

Category: Data Import/Export

Settings
Default: On, yout

|7On

Simulink exports root outport signal data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store the data. See “Export Simulation Data”
for more information.

I off
Simulink does not export root outport signal data during simulation.

Tips
* You must select the Output check box before entering a name for the output variable.

* Simulink saves the output to the MATLAB workspace at the base sample rate of the model if you
set the Format parameter to a value other than Dataset. For Dataset format, logging uses the
rate set for each Outport block.

* The Additional parameters area includes parameters for specifying other characteristics of the
saved data, including the format and the decimation factor.

» To specify an interval for logging, use the Logging intervals parameter.
* To log Output data to the Simulation Data Inspector, select Dataset format.

* To log fixed-point data, set the Format parameter to Dataset. If you set the Format parameter to
a value other than Dataset, Simulink logs fixed-point data as double.

* Tolog bus data, set the Format parameter to a value other than Array.

* Ifyou use a format other than Dataset, you can convert the logged data to Dataset format.
Converting the data to Dataset makes it easier to post-process with other logged data. For more
information, see “Dataset Conversion for Logged Data”.

» For the active variant condition, Simulink creates a Dataset object with the logged data. For
inactive variant conditions, Simulink creates MATLAB timeseries with zero samples.

* When you call the sim function inside a function, the output logged by the function is in the
function workspace. To access that output in the base workspace, add a command such as this
after the sim command:

assignin('base', 'yout',yout);

* Do not use a variable name that is the same as a Simulink.SimulationOutput object function
name or property name.

Output

* Tolog data for a variable-size signal connected to a root-level Outport block, use the Dataset
format. Data for a variable-size signal is always saved as a timetable object that contains a cell

array of data for each time step.

Programmatic Use
Parameter: SaveQutput
Value: 'on' | 'off'

Default: 'on'

Parameter: QutputSaveName
Type: character vector

Value: any valid value
Default: 'yout'

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting

No impact

No impact

No recommendation
No recommendation

. “Data Format for Logged Simulation Data”

. “Export Simulation Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2
. “Dataset Conversion for Logged Data”

3-13

3 Data Import/Export Parameters

Final states

3-14

Description
Saves the logged states of the model at the end of a simulation to the specified MATLAB variable.

Category: Data Import/Export

Settings
Default: Off, xFinal

|7On

Simulink software exports final logged state data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of these final states. See
Importing and Exporting States for more information.

I~ off
Simulink software does not export the final state data during simulation.

Tips
* You must select the Final states check box before entering the final states variable.

* Simulink software saves the final states in a MATLAB workspace variable having the specified
name.

* The saved data has the format that you specify with the Format parameter.
* Simulink creates empty variables for final state logging (xfinal) if both of these conditions apply:

* You enable Final states.
* A model has no states.

* Using the Final states is not always sufficient for complete and accurate restoration of a
simulation state. The ModelOperatingPoint object contains the set of all variables that are
related to the simulation of a model. For details, see “Save complete SimState in final state” on
page 3-22 and “Use Model Operating Point for Faster Simulation Workflow”.

* See “Save Block States and Simulation Operating Points” for more information.

» If you use a format other than Dataset, you can convert the logged data to Dataset format.
Converting the data to Dataset makes it easier to postprocess with other logged data. For more
information, see “Dataset Conversion for Logged Data”.

Programmatic Use
Parameter: SaveFinalState
Value: 'on' | 'off'

Default: 'off'

Parameter: FinalStateName
Type: character vector

Final states

Default: 'xFinal'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. Importing and Exporting States

. “Model Configuration Parameters: Data Import/Export” on page 3-2
. “Dataset Conversion for Logged Data”

3-15

3 Data Import/Export Parameters

Format

3-16

Description

Specify data format for logging states, output, and final states data.

Category: Data Import/Export

Settings
Default: Dataset

Dataset

Logged states and outputs are each stored in a Simulink.SimulationData.Dataset object.
Each Dataset object contains an element for each individual state or output. The data for each
state or output is stored in a timeseries object by default except variable-size signal data.
Variable-size signal data is always stored in a timetable object that contains a cell array of
signal values for each time step.

Array

Logged data is stored in a matrix. Each row in the matrix corresponds to a simulation time step,
and each column corresponds to a state or output. The order of the states and outputs in the
matrix depends on the block sorted order, which can change from one simulation to the next. Do
not use Array format to log bus data.

Structure

State and output data each log to a structure. The states structure contains a structure for each
block in the model that has a state. The outputs structure contains a structure for each root-level
Outport block in the model.

Structure with time

The data logs to a structure with a time field and a signals field. The time field contains a vector
of simulation times. The signals field contains the same data as the Structure format.

Tips
* When you log states and output data using Dataset:

* You can work with logged data in MATLAB without a Simulink license.

* Logging supports saving multiple data values for a given time step, which can be required for
logging data in a For Iterator Subsystem, a While Iterator Subsystem, and Stateflow.

* Logged data automatically streams to the Simulation Data Inspector during simulation.
* You can log variable-size signals using root-level Outport blocks.
* Dataset format does not support:

* Code generation.
* Logging states inside a function-call subsystem.
* Logging states during rapid accelerator simulations.

Format

To use Array format, all logged states and outputs must be:

¢ All scalars or all vectors (or all matrices for states)
* All real or all complex
* The same data type

Use another format if the outputs and states in your model do not meet these conditions.
The format specified for the Format parameter does not apply to final states data.

Programmatic Use

Parameter: SaveFormat

Value: 'Array' | 'Structure' | 'StructureWithTime' | '‘Dataset’
Default: 'Dataset’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

“Export Simulation Data”

“Data Format for Logged Simulation Data”

“Time, State, and Output Data Format”

“Dataset Conversion for Logged Data”

“Model Configuration Parameters: Data Import/Export” on page 3-2

3-17

3 Data Import/Export Parameters

Limit data points to last

3-18

Description
Log only the last n data points for outputs and states.

Category: Data Import/Export

Settings
Default: Off, 1000

|7On

Limits the number of data points logged to the workspace to the specified number. This setting
only applies to output and states logging.

Specify the maximum number of data points to log to the workspace. At the end of the simulation,
the workspace contains the last n points generated by the simulation.

I off
Does not limit the number of data points logged to the workspace for outputs and states.

Tips

» For some models and simulation conditions, logging can produce large amounts of data. Use this
parameter to limit the number of samples saved when you only need to analyze data from the end
of the simulation.

* You can also apply a Decimation factor to reduce the number of samples saved for outputs and
states.

» For more information about configuring which data points are logged for different logging
techniques, see “Specify Signal Values to Log”.

Programmatic Use

Parameter: LimitDataPoints

Value: 'on' | 'off'

Default: 'off'

Parameter: MaxDataPoints

Type: character vector

Value: positive integer greater than zero
Default: '1000'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Limit data points to last

Application Setting

Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Export Simulation Data”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-19

3 Data Import/Export Parameters

Decimation

3-20

Description

Specify the decimation factor, n, such that every nth data point is logged for outputs and states.

Category: Data Import/Export

Settings
Default: 1

* With the default value, 1, all data points are saved for logged outputs and states.
» The specified value must be a positive integer greater than zero.
* The value of this parameter is not tunable.

* Simulink outputs data at the specified number of data points. For example, specifying 2 saves
every other data point, while specifying 10 saves one in ten data points.

Tips
» For some models and simulation conditions, logging can produce large amounts of data. Use this

parameter to limit the number of samples saved when a reduced effective sample rate is sufficient.

* You can also use the Limit data points to last parameter to reduce the number of sample values
saved for output and states logging.

+ For more information about configuring which data points are logged for different logging
techniques, see “Specify Signal Values to Log”.

Programmatic Use

Parameter: Decimation

Type: character vector

Value: positive integer greater than zero
Default: '1'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Decimation

See Also

Related Examples
. “Export Simulation Data”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-21

3 Data Import/Export Parameters

Save complete SimState in final state

3-22

Note Save complete SimState in final state is not recommended. Use Save final operating
point instead.

Description

At the end of a simulation, Simulink saves the complete set of states of the model, including logged
states, to the specified MATLAB variable.

Category: Data Import/Export

Settings
Default: Off, xFinal

¥ On

Simulink software exports the complete set of final state data (i.e., the SimState) to the MATLAB
workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of the final states. See
Importing and Exporting States for more information.

I off
Simulink software exports the final logged states during simulation.
Tips

* You must select the Final states check box to enable the Save complete SimState in final state
option.

* Simulink saves the final states in a MATLAB workspace variable having the specified name.
Dependencies

This parameter is enabled by Final states.

Programmatic Use

Parameter: SaveCompleteFinalSimState
Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact

Save complete SimState in final state

Application Setting
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. Importing and Exporting States

. “Limitations of Saving and Restoring Operating Point”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-23

3 Data Import/Export Parameters

Save final operating point

3-24

Description

At the end of a simulation, Simulink saves the complete set of states of the model, including logged
states, to the specified MATLAB variable.

Category: Data Import/Export

Settings
Default: Off, xFinal

|7On

Simulink software exports the complete set of final state data (i.e., the operating point) to the
MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of the final states. See
Importing and Exporting States for more information.

I off
Simulink software exports the final logged states during simulation.
Tips

* You must select the Final states check box to enable the Save final operating point option.
» Simulink saves the final states in a MATLAB workspace variable having the specified name.

Dependencies

This parameter is enabled by Final states.

Programmatic Use

Parameter: SaveOperatingPoint
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Save final operating point

See Also

Related Examples

. Importing and Exporting States

. “Limitations of Saving and Restoring Operating Point”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-25

3 Data Import/Export Parameters

Signal logging

3-26

Description
Globally enable or disable signal logging to the workspace for a model.

Category: Data Import/Export

Settings
Default: On, logsout

¥ On

Enables logging data for specified signals to the MATLAB workspace and the Simulation Data
Inspector.

Specify the name of variable used to store logged signal data in the MATLAB workspace. For
more information, see “Specify a Name for Signal Logging Data”.

I off

Disables logging signal data to the MATLAB workspace and the Simulation Data Inspector.

Tips

You must select the Signal logging check box before entering the signal logging variable.
Simulink saves the signal data in a MATLAB workspace variable with the specified name.
The saved data is a Simulink.SimulationData.Dataset object.

Data for variable-size signals is saved as a timetable object with a cell array of values for each
time step.

Simulink does not support signal logging for the following types of signals:

* Output of a Function-Call Generator block

* Signal connected to the input of a Merge block

* Outputs of Trigger and Enable blocks

If you select Signal logging, you can use the Configure Signals to Log button to open the
Signal Logging Selector. You can use the Signal Logging Selector to:

* Review all signals in a model hierarchy that are configured for logging

* Override signal logging settings for specific signals

* Control signal logging throughout a model reference hierarchy in a streamlined way

You can use the Signal Logging Selector with Simulink and Stateflow signals.

For details about the Signal Logging Selector, see “View Logging Configuration Using the Signal
Logging Selector” and “Override Signal Logging Settings”.

Do not use a variable name that is the same as a Simulink.SimulationOutput object function
name or property name.

Signal logging

» For information about logging Simscape™ data, see “About Simulation Data Logging” (Simscape).

Dependencies

This parameter enables the Configure Signals to Log button.

Programmatic Use
Parameter: SignallLogging
Value: 'on' | 'off'

Default: 'on'

Parameter: SignallLoggingName
Type: character vector

Value: any valid value

Default: 'logsout'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. “Export Signal Data Using Signal Logging”

. “Dataset Conversion for Logged Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-27

3 Data Import/Export Parameters

Data stores

3-28

Description
Globally enable or disable logging of Data Store Memory block variables for this model.

Category: Data Import/Export

Settings
Default: On, dsmsout

|7On

Enables data store logging to the MATLAB workspace and the Simulation Data Inspector during
simulation.

Specify the name of the Simulink.SimulationData.Dataset object for the logged data store
data.
I off

Disables data store logging to the MATLAB workspace and the Simulation Data Inspector during
simulation.

Tips
* Simulink saves the data in a MATLAB workspace variable having the specified name.

* The saved data has the Simulink.SimulationData.Dataset format.

* See “Supported Data Types, Dimensions, and Complexity for Logging Data Stores”, “Data Store
Logging Limitations”, and “Data Store Logging Limitations” for more information.

Dependencies

Select the Data stores check box before entering the data store logging variable.

Programmatic Use
Parameter: DSMLogging
Value: 'on' | 'off'

Default: 'on'

Parameter: DSMLoggingName
Type: character vector

Value: any valid value
Default: 'dsmOut"’

Recommended Settings

Application Setting
Debugging No impact

Data stores

Application Setting
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Simulink.SimulationData.DataStoreMemory | Data Store Memory

Related Examples

. “Log Data Stores”

. “Export Signal Data Using Signal Logging”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-29

3 Data Import/Export Parameters

Log Dataset data to file

3-30

Description
Log simulation data saved using the Dataset format to a MAT-file.

Category: Data Import/Export

Settings
Default: 'of '

V' on
Enables logging data saved using the Dataset format to a MAT-file.

Log simulation data to a MAT-file when you know prior to simulation that you want to save the
results in a file.

Specify the path and file name for the MAT-file.

I off
Disables logging simulation data to a MAT-file.

Tips
* To use the Log Dataset data to file option, select one or more of these types of data to log:

* States

* Final states

* Signal logging

* Output

* Data stores

* Stateflow states and data

If you are logging states or output data, set the Format parameter to Dataset.

If you select the Final states parameter, clear the Save final operating point parameter.
* When the data in the MAT-file fits into memory, use the load function to access the data.

* When the data in the MAT-file is too large to fit into memory, access the data in the MAT-file using
Simulink.SimulationData.DatasetRef and
matlab.io.datastore.SimulationDatastore objects.

» Except for parallel simulations, Simulink overwrites the contents of the MAT-file during each
simulation unless you change the name of the file between simulations. For details, see “Save
Logged Data from Successive Simulations”.

Dependencies

Select the Log Dataset data to file check box before entering the path to the MAT-file for logging.

Log Dataset data to file

Programmatic Use
Parameter: LoggingToFile
Value: 'on' | 'off'

Default: 'off'

Parameter: LoggingFileName
Value: valid path and file name
Default: 'out.mat'

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact

No impact

No recommendation
No recommendation

Simulink.SimulationData.DatasetRef | Simulink.SimulationData.Dataset | load

Related Examples

. “Log Data to Persistent Storage”
. “Load Big Data for Simulations”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-31

3 Data Import/Export Parameters

Output options

3-32

Description
Select options for generating additional output signal data for variable-step solvers.

Category: Data Import/Export

Settings
Default: Refine output

Refine output

Generates data output between, as well as at, simulation times steps. Use Refine factor to
specify the number of points to generate between simulation time steps. For more information,
see “Refine Output”.

Produce additional output

Generates additional output at specified times. Use Output times to specify the simulation times
at which Simulink software generates additional output.

Produce specified output only

Use Output times to specify the simulation times at which Simulink generates output, in
addition to the simulation start and stop times.

Tips

* These settings can force the solver to calculate output values for times that it would otherwise
have omitted because the calculations were not needed to achieve accurate simulation results.
These extra calculations can cause the solver to locate zero crossings that it would otherwise have
missed.

* For additional information on how Simulink software calculates outputs for these three options,
see “Samples to Export for Variable-Step Solvers”.

* Do not use a variable name that is the same as a Simulink.SimulationOutput object function
name or property name.

Dependencies

This parameter is enabled only if the model specifies a variable-step solver (see Solver Type on page
14-8).

Selecting Refine output enables the Refine factor parameter.

Selecting Produce additional output or Produce specified output only enables the
Output times parameter.

Programmatic Use
Parameter: QutputOption

Output options

Value: 'RefineQOutputTimes' | 'AdditionalOutputTimes' | 'SpecifiedQutputTimes'
Default: 'RefineQutputTimes'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. “Output Options”

. “Refine factor” on page 3-34

. “Refine Output”

. “Export Simulation Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-33

3 Data Import/Export Parameters

Refine factor

3-34

Description
Specify how many points to generate between time steps to refine the output.

Category: Data Import/Export

Settings
Default: 1

* The default refine factor is 1, meaning that no extra data points are generated.
* A refine factor of 2 provides output midway between the time steps, as well as at the steps.

Tip

Simulink software ignores this option for discrete models. This is because the value of data between
time steps is undefined for discrete models.

Dependency

This parameter is enabled only if you select Refine output as the value of Output options.

Programmatic Use
Parameter: Refine
Type: character vector

Value: any valid value
Default: '1'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Refine Output”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

Output times

Output times

Description

Specify times at which Simulink software should generate output in addition to, or instead of, the
times of the simulation steps taken by the solver used to simulate the model.

Category: Data Import/Export

Settings

Default: []

Enter a matrix containing the times at which Simulink software should generate output in addition
to, or instead of, the simulation steps taken by the solver.

If the value of Qutput options is Produce additional output, for the default value [],
Simulink generates no additional data points.

If the value of Qutput options is Produce specified output only, for the default value []
Simulink generates no data points.

Tips

The Produce additional output option generates output at the specified times, as well as at
the regular simulation steps.

The Produce specified output only option generates output at the specified times.

Discrete models define outputs only at major time steps. Therefore, Simulink software logs output
for discrete models only at major time steps. If the Output times field specifies other times,
Simulink displays a warning in the MATLAB Command Window.

For additional information on how Simulink software calculates outputs for the Output options
Produce specified output only and Produce additional output options, see “Samples
to Export for Variable-Step Solvers”.

Dependency

This parameter is enabled only if the value of Qutput options is Produce additional outputor
Produce specified output only.

Programmatic Use
Parameter: QOutputTimes
Type: character vector

Value: any valid value
Default: '[]"'

Recommended Settings

Application Setting
Debugging No impact

3-35

3 Data Import/Export Parameters

3-36

Application
Traceability
Efficiency

Safety precaution

See Also

Related Examples
. “Refine Output”

Setting

No impact

No recommendation
No recommendation

. “Model Configuration Parameters: Data Import/Export” on page 3-2

Single simulation output

Single simulation output

Description

Specify whether to return simulation data as a single Simulink.SimulationQOutput object.
Simulation data includes simulation metadata and all data logged to the workspace, including
outputs, states, data store memory, signals, and data logged to the workspace using blocks.

Category: Data Import/Export

Settings
Default: On, out

|7On

All simulation data logged to the workspace is returned in the workspace as a single
Simulink.SimulationOutput ohject.

Specify the name of the variable used to store the Simulink.SimulationOutput object.

I off

Simulation data is returned in one or more variables, depending on model and logging
configuration.

Tips

* When you log data using the To File block, the data logs to the specified file and does not appear
in the single Simulink.SimulationOutput object.

* When you select Log Dataset data to file, the data that logs to the MAT file does not appear in
the single Simulink.SimulationOutput object.

* Use the who function for the Simulink.SimulationOutput object to view a list of the variables
in the object.

* To use the Logging intervals parameter, you must select Single simulation output.

Programmatic Use

Parameter: ReturnWorkspaceQutputs
Value: 'on' | 'off'

Default: 'on’

Parameter: ReturnWorkspaceOutputsName
Type: string | character vector

Value: valid MATLAB variable name

Default: 'out’

3-37

3 Data Import/Export Parameters

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Objects

Simulink.SimulationOutput

Functions

sim

Related Examples
. “Model Configuration Parameters: Data Import/Export” on page 3-2
. “Run Simulations Programmatically”

3-38

Logging intervals

Logging intervals

Description

Specify time intervals during which to log data

Category: Data Import/Export

Settings

Default:[-inf,inf]

Specify a two-column matrix that contains real, double values that indicate the start and stop
time for an interval in which you want to log data. The matrix can contain any number of rows to
specify any number of logging intervals.

The matrix elements cannot be NaN.

Intervals must be disjoint and ordered. For example, you can specify these three intervals:
[1,5;6,10;11,15].

Tips

The logging intervals apply to:

* Time

» States

* Qutput

+ Signal logging

* To Workspace blocks

* To File blocks

* Data logged to the workspace using a Record block
The logging intervals do not apply to:

* Final states data

* Data logged using scopes

* Data logged to a file using a Record block

* Data in the Simulation Data Inspector

Logging intervals do not affect data displayed in the Record block or using dashboard blocks.

Logging intervals are only supported when you select Single simulation output. The single
simulation output is a Simulink.SimulationOutput object that contains all logged data that
logs to the workspace.

When you specify an interval that includes a time before the simulation start time or after the
simulation stop time, no data is logged for that interval.

The Decimation and Limit data points to last parameters also apply to logged data when you
specify logging intervals.

3-39

3 Data Import/Export Parameters

3-40

* When you change the logging intervals while using the Simulation Stepper to step through a
simulation, the new logging intervals do not apply until you step forward.

+ SIL simulation mode supports logging intervals for data that logs to a
Simulink.SimulationOutput object. In SIL mode, specified logging intervals are ignored
without warning for:

* Data logged using a To File block
* MAT file logging (enabled with the MAT-file logging configuration parameter)

» PIL simulation mode does not support logging intervals. Specified logging intervals are ignored
without a warning message.

Dependencies

To enable the Logging intervals parameter, select Single simulation output.

Programmatic Use

Parameter: LoggingIntervals

Type: two-column matrix with real, double values
Default: [-inf,inf]

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Model Settings
Single simulation output | Decimation | Limit data points

Blocks
To File | Record, XY Graph | To Workspace

Related Examples

. “Specify Signal Values to Log”

. “Run Simulations Programmatically”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

Record logged workspace data in Simulation Data Inspector

Record logged workspace data in Simulation Data Inspector

Description

Specify whether to send data logged in a format other than Dataset and data logged using blocks to
the Simulation Data Inspector after simulation pauses or completes.

Category: Data Import/Export

Settings
Default: Off

|7On

Record these kinds of data to display in the Simulation Data Inspector after a simulation pauses
or completes:

* States and output data logged in Array or Structure with time formats
+ Data logged using To Workspace blocks, To File blocks, or Scope blocks

This setting adds a recording icon to the Simulation Data Inspector button.

I off

Do not record data logged using blocks or in a format other than Dataset to view in the
Simulation Data Inspector.

Tips
* When you log data using the Array format, you must also log time for the states and output data
to log to the Simulation Data Inspector.

* To open the Simulation Data Inspector, click the Simulation Data Inspector button.

Programmatic Use
Parameter: InspectSignallLogs
Value: 'on' | 'off'

Default: 'off"'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

3-41

3 Data Import/Export Parameters

See Also
Simulation Data Inspector

Related Examples

. “Load Signal Data for Simulation”

. “View Data in the Simulation Data Inspector”

. “Inspect Simulation Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-42

Diagnostics Parameters: Compatibility

4 Diagnostics Parameters: Compatibility

Model Configuration Parameters: Compatibility Diagnostics

4-2

The Diagnostics > Compatibility category includes parameters for detecting issues when you use a

model that you created in an earlier release.

Parameter

Description

“S-function upgrades needed” on page 4-4

Select the diagnostic action to take if Simulink
software encounters a block that has not been
upgraded to use features of the current release.

“Block behavior depends on frame status of
signal” on page 4-5

Select the diagnostic action to take when
Simulink software encounters a block whose
behavior depends on the frame status of a signal.

“Operating point object from a different release”
on page 4-7

Use this check to report that a
Simulink.op.ModelOperatingPoint object
was generated by an earlier version of Simulink.

See Also

Related Examples

. Diagnosing Simulation Errors

. Solver Diagnostics on page 9-2

. Sample Time Diagnostics on page 8-2

. Data Validity Diagnostics on page 6-2

. Type Conversion Diagnostics on page 11-2
. Connectivity Diagnostics on page 5-2

. Compatibility Diagnostics on page 4-2

. “Model Configuration Parameters: Model Referencing Diagnostics” on page 7-2

Compatibility Diagnostics Overview

Compatibility Diagnostics Overview

Configuration

Set the parameters displayed.

Tips

* To open the Compatibility pane, in the Simulink Editor, in the Modeling tab, click Model
Settings, then select Diagnostics > Compatibility.
* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.
2 From the context menu, select What's This.

v | Solpe=—is==mi=ing co
Whgat's This?
s

See Also

Related Examples

. “Model Configuration Parameters: Compatibility Diagnostics” on page 4-2

4-3

4 Diagnostics Parameters: Compatibility

S-function upgrades needed

Description

Select the diagnostic action to take if Simulink software encounters a block that has not been
upgraded to use features of the current release.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter:SFcnCompatibilityMsg
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples
. Diagnosing Simulation Errors
. “Model Configuration Parameters: Compatibility Diagnostics” on page 4-2

4-4

Block behavior depends on frame status of signal

Block behavior depends on frame status of signal

Description

Select the diagnostic action to take when Simulink software encounters a block whose behavior
depends on the frame status of a signal.

In future releases, frame status will no longer be a signal attribute. To prepare for this change, many
blocks received a new parameter. This parameter allows you to specify whether the block treats its
input as frames of data or as samples of data. Setting this parameter prepares your model for future
releases by moving control of sample- and frame-based processing from the frame status of the signal
to the block.

This diagnostic helps you identify whether any of the blocks in your model relies on the frame status
of a signal. By knowing this status, you can determine whether the block performs sample- or frame-
based processing. For more information, see the R2012a DSP System Toolbox™ Release Notes
section about frame-based processing.

Note Frame-based processing requires a DSP System Toolbox license.

Category: Diagnostics

Settings

Default: error

none
Simulink software takes no action.
warning

If your model contains any blocks whose behavior depends on the frame status of a signal,
Simulink software displays a warning.

error

If your model contains any blocks whose behavior depends on the frame status of a signal,
Simulink software terminates the simulation and displays an error message.

Tips

* Use the Upgrade Advisor to automatically update the blocks in your model. See “Model
Upgrades”.

Command-Line Information

Parameter: FrameProcessingCompatibilityMsg
Value: 'none' | 'warning' | 'error’

Default: 'warning'

4 Diagnostics Parameters: Compatibility

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Sample- and Frame-Based Concepts” (DSP System Toolbox)

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Compatibility Diagnostics” on page 4-2

4-6

Operating point object from a different release

Operating point object from a different release

Description

Use this check to report that the Simulink.op.ModelOperatingPoint object specified using the
Initial state parameter was generated by a different version of Simulink.

Category: Diagnostics

Settings
Default: error

warning
Simulink restores as much of the model operating point as possible.
error

When Simulink detects that the ModelOperatingPoint object was generated by an earlier
version of Simulink, it does not load the object to restore the model operating point.

Command-Line Information

Parameter: NonCurrentReleaseOperatingPointMsg
Value: 'warning' | 'error'

Default: 'error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Use Model Operating Point for Faster Simulation Workflow”
. “Model Configuration Parameters: Compatibility Diagnostics” on page 4-2

Diagnostics Parameters: Connectivity

5 Diagnostics Parameters: Connectivity

Model Configuration Parameters: Connectivity Diagnostics

5-2

The Diagnostics > Connectivity category includes parameters for detecting issues related to signal
line connectivity, for example, unconnected ports and lines.

On the Configuration Parameters dialog box, the following configuration parameters are on the

Connectivity pane.

Parameter

Description

“Signal label mismatch” on page 5-4

Select the diagnostic action to take when
different names are used for the same signal as
that signal propagates through blocks in a model.
This diagnostic does not check for signal label
mismatches on a virtual bus signal.

“Unconnected block input ports” on page 5-5

Select the diagnostic action to take when the
model contains a block with an unconnected
input.

“Unconnected block output ports” on page 5-6

Select the diagnostic action to take when the
model contains a block with an unconnected
output.

“Unconnected line” on page 5-7

Select the diagnostic action to take when the
Model contains an unconnected line or an
unmatched Goto or From block.

“Unspecified bus object at root Outport block” on
page 5-8

Select the diagnostic action to take while
generating a simulation target for a referenced
model if any of the model's root Outport blocks is
connected to a bus but does not specify a bus
object (see Simulink.Bus).

“Element name mismatch” on page 5-10

Select the diagnostic action to take if the name of
a bus element does not match the name specified
by the corresponding bus object.

“Bus signal treated as vector” on page 5-12

Select the diagnostic action to take when
Simulink software detects a virtual bus signal
that is used as a mux signal.

“Non-bus signals treated as bus signals” on page
5-14

Detect when Simulink implicitly converts a non-
bus signal to a bus signal to support connecting
the signal to a Bus Assignment or Bus Selector
block.

“Repair bus selections” on page 5-16

Repair broken selections in the Bus Selector and
Bus Assignment block parameter dialogs due to
upstream bus hierarchy changes.

“Context-dependent inputs” on page 5-17

Select the diagnostic action to take when
Simulink software has to compute any of a
function-call subsystem's inputs directly or
indirectly during execution of a call to a function-
call subsystem.

Model Configuration Parameters: Connectivity Diagnostics

See Also

Related Examples

. Diagnosing Simulation Errors

. Solver Diagnostics on page 9-2

. Sample Time Diagnostics on page 8-2

. Data Validity Diagnostics on page 6-2

. Type Conversion Diagnostics on page 11-2
. Compatibility Diagnostics on page 4-2

. Model Referencing Diagnostics on page 7-2

5 Diagnostics Parameters: Connectivity

Signal label mismatch

Description

Select the diagnostic action to take when different names are used for the same signal as that signal
propagates through blocks in a model. This diagnostic does not check for signal label mismatches on
a virtual bus signal.

Category: Diagnostics

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: SignallLabelMismatchMsg
Value: 'none' | 'warning' | 'error’'
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples
. “Signal Names and Labels”
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

Unconnected block input ports

Unconnected block input ports

Description
Select the diagnostic action to take when the model contains a block with an unconnected input.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnconnectedInputMsg
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples
. Diagnosing Simulation Errors
. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

3-5

5 Diagnostics Parameters: Connectivity

Unconnected block output ports

Description
Select the diagnostic action to take when the model contains a block with an unconnected output.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnconnectedOutputMsg
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples
. Diagnosing Simulation Errors
. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

Unconnected line

Unconnected line

Description

Select the diagnostic action to take when the Model contains an unconnected line or an unmatched
Goto or From block.

Category: Diagnostics

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnconnectedLineMsg
Value: 'none' | 'warning' | 'error’'
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples

. Diagnosing Simulation Errors

. Goto
. From
. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

5-7

5 Diagnostics Parameters: Connectivity

Unspecified bus object at root Outport block

Description

Select the diagnostic action to take when generating a simulation target for a referenced model if any
root Outport block of the referenced model receives a bus and does not specify a Simulink.Bus
object.

Category: Diagnostics

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

» This diagnostic applies only when a model is used as a referenced model. Simulating or updating
the model on its own does not invoke the diagnostic.

* A root Out Bus Element block does not require a Bus object for the corresponding Model block to
output a bus.

* When a root Outport block receives a virtual bus and does not specify a Bus object, the
corresponding Model block outputs a vector.

Command-Line Information

Parameter: RootOutportRequireBusObject
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Unspecified bus object at root Outport block

See Also

Functions
Simulink.Bus

Related Examples

. Diagnosing Simulation Errors

. Outport

. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

5-9

5 Diagnostics Parameters: Connectivity

Element name mismatch

5-10

Description

Select the diagnostic action to take if the name of a bus element does not match the name specified
by the corresponding bus object.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips
* You can use this diagnostic along with bus objects to ensure that your model meets bus element

naming requirements imposed by some blocks, such as the Switch block.

* With a Bus Creator block, you can enforce strong data typing by using the Use names from
inputs instead of from bus object block parameter.

Command-Line Information
Parameter: BusObjectLabelMismatch
Value: 'none' | 'warning' | 'error’'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Element name mismatch

See Also

Related Examples
. Diagnosing Simulation Errors
. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

5-11

5 Diagnostics Parameters: Connectivity

Bus signal treated as vector

Description

Select the diagnostic action to take when Simulink software detects a virtual bus signal treated as a
vector signal.

Category: Diagnostics

Settings

Default: none

none

Disables checking for virtual bus signals treated as vector signals.
warning

Simulink displays a warning if it detects a virtual bus signal treated as a vector signal.
error

Simulink terminates the simulation and displays an error message when it builds a model that
uses a virtual bus signal treated as a vector signal.

Tips

» The diagnostic considers a virtual bus signal to be treated as a vector signal if the signal is input
to a block that does not accept virtual bus signals. See “Bus-Capable Blocks” for details.

* Virtual buses can be treated as vector signals only when all constituent signals have the same
attributes.

* You can identify bus signals that are treated as a vectors using the Model Advisor “Check bus
signals treated as vectors” check.

Command-Line Information

Parameter: StrictBusMsg

Value: 'ErrorLevell' | 'WarnOnBusTreatedAsVector' | 'ErrorOnBusTreatedAsVector'
Default: 'ErrorLevell’

Here is how the StrictBusMsg parameter values map to the values of the Bus signal treated as
vector parameter in the Configuration Parameters > Diagnostics > Connectivity dialog box.

Value of StrictBusMsg Value of “Bus signal treated as vector”
diagnostic

ErrorLevell none

WarnOnBusTreatedAsVector warning

ErrorOnBusTreatedAsVector error

5-12

Bus signal treated as vector

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Functions

Simulink.BlockDiagram.addBusToVector

Related Examples

. Diagnosing Simulation Errors
. “Bus-Capable Blocks”

. Demux

. Bus to Vector

. “Underspecified initialization detection” on page 2-65
. “Check virtual bus inputs to blocks”
. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

5-13

5 Diagnostics Parameters: Connectivity

Non-bus signals treated as bus signals

5-14

Description

Detect when Simulink implicitly converts a non-bus signal to a bus signal to support connecting the
signal to a Bus Assignment or Bus Selector block.

Category: Diagnostics

Settings
Default: none

none

Implicitly converts non-bus signals to bus signals to support connecting the signal to a Bus
Assignment or Bus Selector block.

warning

Simulink displays a warning, indicating that it has converted a non-bus signal to a bus signal. The
warning lists the non-bus signals that Simulink converts.

error

Simulink terminates the simulation without converting non-bus signals to bus signals. The error
message lists the non-bus signal that is being treated as a bus signal.

Command-Line Information
Parameter: NonBusSignalsTreatedAsBus
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Functions

Simulink.BlockDiagram.addBusToVector

Related Examples
. Diagnosing Simulation Errors
. “Bus-Capable Blocks”

Non-bus signals treated as bus signals

Demux
Bus to Vector
“Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

5-15

5 Diagnostics Parameters: Connectivity

Repair bus selections

5-16

Description

Repair broken selections in the Bus Selector and Bus Assignment block parameter dialogs due to
upstream bus hierarchy changes.

Category: Diagnostics

Settings

Default: Warn and repair

Warn and repair

Simulink displays a warning, indicating the block parameters for Bus Selector and Bus
Assignment blocks that Simulink repaired to reflect upstream bus hierarchy changes.

Error without repair

Simulink terminates the simulation and displays an error message indicating the block
parameters that you need to repair for Bus Selector and Bus Assignment blocks to reflect
upstream bus hierarchy changes.

Command-Line Information

Parameter: BusNameAdapt

Values: 'WarnAndRepair' | 'ErrorWithoutRepair!’
Default: 'WarnAndRepair'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution Warn and repair
See Also

Related Examples

. “Resolve Circular Dependencies in Buses”

. Diagnosing Simulation Errors

. “Bus-Capable Blocks”

. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2
. “Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

Context-dependent inputs

Context-dependent inputs

Description

Select the diagnostic action to take when Simulink has to compute any function-call subsystem inputs
directly or indirectly during execution of a call to a function-call subsystem.

Category: Diagnostics

Settings

Default: error

error
Issue an error for context-dependent inputs.
warning

Issue a warning for context-dependent inputs.

Tips
+ This situation occurs when executing a function-call subsystem that can change its inputs.
» For examples of function-call subsystems, see “Simulink Subsystem Semantics”.
» To fix an error or warning generated by this diagnostic, use one of these approaches:
* For the Inport block inside of the function-call subsystem, enable the Latch input for
feedback signals of function-call subsystem outputs parameter.
* Place a Function-Call Feedback Latch block on the feedback signal.

For examples of using these approaches, open the sl subsys fcncallerrl2 model and press the
more info button.

Command-Line Information

Parameter: FcnCallInpInsideContextMsg
Value: 'Error'| ‘Warning'
Default: 'Error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Error

5-17

5 Diagnostics Parameters: Connectivity

5-18

See Also

Related Examples

“Using Function-Call Subsystems”

“Pass fixed-size scalar root inputs by value for code generation” on page 12-18
Subsystem Semantics

Subsystem

Diagnosing Simulation Errors

“Model Configuration Parameters: Connectivity Diagnostics” on page 5-2

Diagnostics Parameters: Data Validity

6 Diagnostics Parameters: Data Validity

Model Configuration Parameters: Data Validity Diagnostics

6-2

The Diagnostics > Data Validity category includes parameters for detecting issues related to data
(signals, parameters, and states). These issues include:

* Loss of information due to data type quantization and overflow.

* Loss of parameter tunability in the generated code.
* Loss of information due to Data Store Write and Data Store Read block ordering.

On the Configuration Parameters dialog box, the following configuration parameters are on the Data

Validity pane.

Parameter

Description

“Signal resolution” on page 6-6

Select how Simulink software resolves signals
and states to Simulink.Signal objects.

“Division by singular matrix” on page 6-8

Select the diagnostic action to take if the
Product, Matrix Multiply block detects a singular
matrix while inverting one of its inputs in matrix
multiplication mode.

“Underspecified data types” on page 6-10

Select the diagnostic action to take if Simulink
software could not infer the data type of a signal
during data type propagation.

“Simulation range checking” on page 6-12

Select the diagnostic action to take when signals
exceed specified minimum or maximum values.

“String truncation checking” on page 6-14

Select the diagnostic action to take if the string
signal is truncated.

“Wrap on overflow” on page 6-15

Select the diagnostic action to take if the value of
a signal overflows the signal data type and wraps
around.

“Underspecified dimensions” on page 6-19

Select the diagnostic action to take if Simulink
software could not infer the signal dimension at
compile time.

“Saturate on overflow” on page 6-17

Select the diagnostic action to take if the value of
a signal is too large to be represented by the
signal data type, resulting in a saturation.

“Inf or NaN block output” on page 6-20

Select the diagnostic action to take if the value of
a block output is Inf or NaN at the current time
step.

“'rt" prefix for identifiers” on page 6-22

Select the diagnostic action to take during code
generation if a Simulink object name (the name of
a parameter, block, or signal) begins with rt.

“Detect downcast” on page 6-24

Select the diagnostic action to take when a
parameter downcast occurs during code
generation.

Model Configuration Parameters: Data Validity Diagnostics

Parameter

Description

“Detect overflow” on page 6-26

Select the diagnostic action to take if a parameter
overflow occurs during simulation.

“Detect underflow” on page 6-28

Select the diagnostic action to take when a
parameter underflow occurs during simulation.

“Detect precision loss” on page 6-30

Select the diagnostic action to take when
parameter precision loss occurs during
simulation.

“Detect loss of tunability” on page 6-32

Select the diagnostic action to take when an
expression with tunable variables is reduced to
its numerical equivalent in the generated code.

“Detect read before write” on page 6-34

Select the diagnostic action to take if the model
attempts to read data from a data store to which
it has not written data in this time step.

“Detect write after read” on page 6-36

Select the diagnostic action to take if the model
attempts to write data to a data store after
previously reading data from it in the current
time step.

“Detect write after write” on page 6-38

Select the diagnostic action to take if the model
attempts to write data to a data store twice in
succession in the current time step.

“Multitask data store” on page 6-40

Select the diagnostic action to take when one
task reads data from a Data Store Memory block
to which another task writes data.

“Duplicate data store names” on page 6-42

Select the diagnostic action to take when the
model contains multiple data stores that have the
same name. The data stores can be defined with
Data Store Memory blocks or Simulink.Signal
objects.

These configuration parameters are in the Advanced parameters section.

Parameter

Description

“Array bounds exceeded” on page 2-56

Ensure that Simulink-allocated memory used in
S-functions does not write beyond its assigned
array bounds when writing to its outputs, states,
or work vectors.

“Model Verification block enabling” on page 2-58

Enable model verification blocks in the current
model either globally or locally.

“Detect multiple driving blocks executing at the
same time step” on page 2-63

Select the diagnostic action to take when the
software detects a Merge block with more than
one driving block executing at the same time
step.

6-3

6 Diagnostics Parameters: Data Validity

6-4

Parameter

Description

“Underspecified initialization detection” on page
2-65

Select how Simulink software handles
initialization of initial conditions for conditionally
executed subsystems, Merge blocks, subsystem
elapsed time, and Discrete-Time Integrator
blocks.

“Detect ambiguous custom storage class final
values” on page 2-115

Detect if a signal using a Reusable custom
storage class does not have a unique endpoint.
The run-time environment should not read the
variable because its value is ambiguous.

“Detect non-reused custom storage classes” on
page 2-117

Detect if a signal uses a Reusable custom storage
class that the code generator cannot reuse with
other uses of the same Reusable custom storage
class. If the code generator cannot implement
reuse, the generated code will likely contain
additional global variables.

See Also

Related Examples

. Diagnosing Simulation Errors

. “Data Types Supported by Simulink”

. Solver Diagnostics on page 9-2

. Sample Time Diagnostics on page 8-2

. Type Conversion Diagnostics on page 11-2
. Connectivity Diagnostics on page 5-2

. Compatibility Diagnostics on page 4-2

. Model Referencing Diagnostics on page 7-2

Data Validity Diagnostics Overview

Data Validity Diagnostics Overview

Configuration

Set the parameters displayed.

Tips

» To open the Data Validity pane, in the Simulink Editor, in the Modeling tab, click Model
Settings, then select Diagnostics > Data Validity.
* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.
2 From the context menu, select What's This.

v | Solpe=—is==mi=ing co
Whgat's This?
s

See Also

Related Examples

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6 Diagnostics Parameters: Data Validity

Signal resolution

6-6

Description

Select how a model resolves signals and states to Simulink.Signal objects. See “Explicit and
Implicit Symbol Resolution” for more information.

Category: Diagnostics

Settings
Default: Explicit only

None

Do not perform signal resolution. None of the signals, states, Stateflow data, and MATLAB
Function block data in the model can resolve to Simulink.Signal objects.

This setting does not affect data stores that you define by creating Simulink.Signal objects
(instead of using Data Store Memory blocks).

Explicit only

Do not perform implicit signal resolution. Only explicitly specified signal resolution occurs. This is
the recommended setting.

Explicit and implicit
Perform implicit signal resolution wherever possible, without posting any warnings about the
implicit resolutions.

Explicit and warn implicit

Perform implicit signal resolution wherever possible, posting a warning of each implicit resolution
that occurs.

Tips

» To reduce the dependency of the model on variables and objects in workspaces and data
dictionaries, which can improve model portability, readability, and ease of maintenance, use None.

When you use this setting, migrate design attributes from existing Simulink.Signal objects into
the model by using block parameters and signal properties (for example, in the Model Data Editor
or in Signal Properties dialog boxes).

* Use the Signal Properties dialog box to specify explicit resolution for signals. For more
information, see Signal Properties.

» Use the State Attributes pane on dialog boxes of blocks that have discrete states, e.g., the
Discrete-Time Integrator block, to specify explicit resolution for discrete states.

* Multiple signals can resolve to the same signal object and have the properties that the object
specifies. However, the signal object cannot use a storage class other than Auto or Reusable.

» MathWorks discourages using implicit signal resolution except for fast prototyping, because
implicit resolution slows performance, complicates model validation, and can have
nondeterministic effects.

Signal resolution

* Simulink software provides the disableimplicitsignalresolution function, which you can
use to change settings throughout a model so that it does not use implicit signal resolution.

Command-Line Information

Parameter: SignalResolutionControl
Value: 'None' | 'UseLocalSettings' | 'TryResolveAll' | 'TryResolveAllWithWarning'

Default: 'UselLocalSettings'

SignalResolutionControl Value

Equivalent Signal Resolution Value

‘None' None
'UselLocalSettings' Explicit only
'TryResolveAll' Explicit and implicit

'TryResolveAllWithWarning'

Explicit and warn implicit

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Objects
Simulink.Signal

Tools
Signal Properties

Related Examples
. Diagnosing Simulation Errors
. Discrete-Time Integrator

Setting

Explicit only or None
Explicit only or None
Explicit only or None
Explicit only

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6 Diagnostics Parameters: Data Validity

Division by singular matrix

6-8

Description

Select the diagnostic action to take if the Product, Matrix Multiply block detects a singular matrix
while inverting one of its inputs in matrix multiplication mode.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tips
For models referenced in Accelerator mode, Simulink ignores the Division by singular matrix
parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration parameter settings during accelerated simulation.

In the Simulink Editor, in the Modeling tab, click Model Advisor, then click OK.

Select By Task.

Run the Check diagnostic settings ignored during accelerated model reference
simulation check.

Command-Line Information
Parameter: CheckMatrixSingularityMsg
Value: 'none' | 'warning' | 'error'
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Division by singular matrix

See Also

Related Examples

. Diagnosing Simulation Errors

. Product, Matrix Multiply

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-9

6 Diagnostics Parameters: Data Validity

Underspecified data types

6-10

Description

Select the diagnostic action to take if Simulink software could not infer the data type of a signal
during data type propagation.

Category: Diagnostics

Identify and Resolve Underspecified Data Types

This example shows how to use the configuration parameter Underspecified data types to identify
and resolve an underspecified data type.

1
2
3

7

Open the example model ex underspecified data types.
Set the Underspecified data types configuration parameter to warning.
Update the diagram.

The signals in the model use the data type uint8, and the model generates a warning.

Open the Diagnostic Viewer. The warning indicates that the output signal of the Constant block
has an underspecified data type.

Open the Constant block dialog box.

On the Signal Attributes tab, Output data type is set to Inherit: Inherit via back
propagation. The Constant block output inherits a data type from the destination block. In this
case, the destination is the Sum block.

Open the Sum block dialog box.

On the Signal Attributes tab, Accumulator data type is set to Inherit: Inherit via
internal rule. Sum blocks cast all of their input signals to the selected accumulator data
type. In this case, the accumulator data type is specified as an inherited type.

Open the Inport block dialog box. On the Signal Attributes tab, Data type is set to uint8.

The data type of the Constant block output signal is underspecified because the source and
destination blocks each apply an inherited data type. The signal cannot identify an explicit data type
to inherit. In cases like this, Simulink applies heuristic rules to select a data type to use.

To resolve the underspecified data type, you can use one of these techniques:

On the Signal Attributes tab of the Constant block dialog box, specify Output data type as a
particular numeric type, such as uints8.

On the Signal Attributes tab of the Sum block dialog box, select the check box Require all
inputs to have the same data type.

With this setting, the Sum block applies the data type of the first input, uint8, to the
underspecified data type of the second input.

Underspecified data types

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnderSpecifiedDataTypeMsg
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples

. “Default for underspecified data type” on page 22-4

. Diagnosing Simulation Errors

. “Use single Data Type as Default for Underspecified Types” (Embedded Coder)
. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-11

6 Diagnostics Parameters: Data Validity

Simulation range checking

6-12

Description

Select the diagnostic action to take when signals exceed specified minimum or maximum values.

Category: Diagnostics

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

» For information about specifying minimum and maximum values for signals and about how
Simulink checks nondouble signals, see “Specify Signal Ranges”.

* For referenced models, Simulink performs signal range checking for only root-level I/O signals. It
does not check internal signals.

* Ifyou have an Embedded Coder license, you can perform signal range checking in top-model or
Model block software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations (Embedded
Coder).

Command-Line Information
Parameter: SignalRangeChecking
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging warning or error
Traceability warning or error
Efficiency none

Safety precaution error

Simulation range checking

See Also

Related Examples

. “Specify Signal Ranges”

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-13

6 Diagnostics Parameters: Data Validity

String truncation checking

Description

Select the diagnostic action to take if the string signal is truncated.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter:StringTruncationChecking
Value: 'none' | 'warning' | 'error’'
Default: 'error'

Recommended Settings

Application Setting
Debugging error
Traceability No impact
Efficiency No impact
Safety precaution error

6-14

Wrap on overflow

Wrap on overflow

Description

Select the diagnostic action to take if the value of a signal overflows the signal data type and wraps
around.

Category: Diagnostics

Settings

Default: warning

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation or code generation and displays an error message.

Tips
» This diagnostic applies only to overflows which wrap for integer and fixed-point data types.

» This diagnostic also reports division by zero for all data types, including floating-point data types.

* To check for floating-point overflows (for example, Inf or NaN) for double or single data types,
select the Inf or NaN block output diagnostic. (See “Inf or NaN block output” on page 6-20 for
more information.)

+ If a floating-point to integer or floating-point to fixed-point overflow is signaled, set the model
parameter EfficientFloat2IntCast to 'off' to ensure that simulation and the generated
code agree. See Remove code from floating-point to integer conversions that wraps out-of-range
values (Simulink Coder) for more detail.

* For models referenced in accelerator mode, Simulink ignores the Wrap on overflow parameter
setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, in the Modeling tab, click Model Advisor, then click OK.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model reference
simulation check.

* During code generation, Simulink may simulate a few blocks in the model for optimization
purposes. If simulation of these blocks triggers this diagnostic to report an error, the software
terminates code generation.

6-15

6 Diagnostics Parameters: Data Validity

6-16

Command-Line Information
Parameter: IntegerOverflowMsg
Value: 'none' | ‘'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact

Safety precaution error

See Also

Related Examples

. “Handle Overflows in Simulink Models” (Fixed-Point Designer)
. Diagnosing Simulation Errors

. “Local and Global Data Stores”

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

Saturate on overflow

Saturate on overflow

Description

Select the diagnostic action to take if the value of a signal is too large to be represented by the signal
data type, resulting in a saturation.

Category: Diagnostics

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation or code generation and displays an error message.

Tips

» This diagnostic applies only to overflows which saturate for integer and fixed-point data types.

* To check for floating-point overflows (for example, Inf or NaN) for double or single data types,
select the Inf or NaN block output diagnostic. (See “Inf or NaN block output” on page 6-20 for
more information.)

* During code generation, Simulink may simulate a few blocks in the model for optimization
purposes. If simulation of these blocks triggers this diagnostic to report an error, the software
terminates code generation.

Command-Line Information
Parameter: IntegerSaturationMsg
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact
Safety precaution error

6-17

6 Diagnostics Parameters: Data Validity

See Also

Related Examples

. “Handle Overflows in Simulink Models” (Fixed-Point Designer)

. Diagnosing Simulation Errors

. “Local and Global Data Stores”

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-18

Underspecified dimensions

Underspecified dimensions

Description

Select the diagnostic action to take if Simulink software could not infer the signal dimension at
compile time.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnderSpecifiedDimensionMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

6-19

6 Diagnostics Parameters: Data Validity

Inf or NaN block output

6-20

Description

Select the diagnostic action to take if the value of a block output is Inf or NaN at the current time
step.

Note Accelerator mode does not support any runtime diagnostics.

Category: Diagnostics

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

» This diagnostic applies only to floating-point overflows for double or single data types.

» To check for integer and fixed-point overflows, select the Wrap on overflow diagnostic. (See
“Wrap on overflow” on page 6-15 for more information.)

* For models referenced in accelerator mode, Simulink ignores the Info or NaN block output
parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, in the Modeling tab, click Model Advisor, then click OK.
2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model reference
simulation check.

Command-Line Information
Parameter: SignalInfNanChecking
Value: 'none' | 'warning' | 'error’
Default: 'none’

Inf or NaN block output

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting
No impact
No impact
No impact
error

. “Validate a Floating-Point Embedded Model”

. Diagnosing Simulation Errors
. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-21

6 Diagnostics Parameters: Data Validity

"rt" prefix for identifiers

6-22

Description

Select the diagnostic action to take during code generation if a Simulink object name (the name of a
parameter, block, or signal) begins with rt.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips
* The default setting (error) causes code generation to terminate with an error if it encounters a

Simulink object name (parameter, block, or signal), that begins with rt.

» This is intended to prevent inadvertent clashes with generated identifiers whose names begins
with rt.

Command-Line Information
Parameter: RTPrefix

Value: 'none' | 'warning' | 'error’
Default: 'error’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

"rt" prefix for identifiers

See Also

Related Examples
. Diagnosing Simulation Errors
. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-23

6 Diagnostics Parameters: Data Validity

Detect downcast

6-24

Description

Select the diagnostic action to take when a parameter downcast occurs during code generation.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates code generation and displays an error message.
Tips

* A parameter downcast occurs if the computation of block output required converting the
parameter's specified type to a type having a smaller range of values (for example, from uint32
to uint8).

» This diagnostic applies only to named tunable parameters (parameters with a non-Auto storage
class).

Command-Line Information
Parameter: ParameterDowncastMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Detect downcast

See Also

Related Examples
. Diagnosing Simulation Errors
. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-25

6 Diagnostics Parameters: Data Validity

Detect overflow

Description

Select the diagnostic action to take if a parameter overflow occurs during simulation.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* A parameter overflow occurs if Simulink software encounters a parameter whose data type's
range is not large enough to accommodate the parameter's ideal value (the ideal value is either
too large or too small to be represented by the data type). For example, suppose that the
parameter's ideal value is 200 and its data type is int8. Overflow occurs in this case because the
maximum value that int8 can represent is 127.

* Parameter overflow differs from parameter precision loss, which occurs when the ideal parameter
value is within the range of the data type and scaling being used, but cannot be represented
exactly.

* Both parameter overflow and precision loss are quantization errors, and the distinction between
them can be a fine one. The Detect overflow diagnostic reports all quantization errors greater
than one bit. For very small parameter quantization errors, precision loss will be reported rather
than an overflow when

(Max + Slope) = Vigeal > (Min — Slope)
where

* Max is the maximum value representable by the parameter data type
* Min is the minimum value representable by the parameter data type
* Slope is the slope of the parameter data type (slope = 1 for integers)
* Vigea is the ideal value of the parameter

Command-Line Information
Parameter: ParameterOverflowMsg
Value: 'none' | ‘'warning' | 'error’

Detect overflow

Default: 'error'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error

See Also

Related Examples

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-27

6 Diagnostics Parameters: Data Validity

Detect underflow

6-28

Description

Select the diagnostic action to take when parameter quantization causes a non-zero value to
underflow to zero during simulation.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tips

* Parameter underflow occurs when Simulink software encounters a parameter whose data type
does not have enough precision to represent the parameter's ideal value because the ideal value is
too small.

* When parameter underflow occurs, casting the ideal non-zero value to the parameter's data type
causes the modeled value to become zero.

» Parameter underflow can occur for any data type, including floating-point, fixed-point, and integer
data types. For example, the ideal value 1e-46 will quantize to zero for single-precision, half-
precision, all integer types, and most commonly used fixed-point types.

* The absolute quantization error will be small relative to the precision of the data type, but the
relative quantization error will be 100%. Depending on how the parameter is used in your
algorithm, the effects of underflow will be significant. For example, if the parameter is directly
used in multiplication or division, then the impact of a 100% relative quantization error can be
significant.

Command-Line Information

Parameter: ParameterUnderflowMsg
Value: 'none' | ‘'warning' | 'error!’

Default: 'none’

Recommended Settings

Application Setting
Debugging No impact

Detect underflow

Application Setting

Traceability No impact

Efficiency No impact

Safety precaution error

See Also

Related Examples

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-29

6 Diagnostics Parameters: Data Validity

Detect precision loss

6-30

Description

Select the diagnostic action to take when parameter precision loss occurs during simulation.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Precision loss occurs when Simulink software encounters a parameter whose data type does not
have enough precision to represent the parameter's value exactly. As a result, the modeled value
differs from the ideal value.

» Parameter precision loss differs from parameter overflow, which occurs when the range of the
parameter's data type, i.e., that maximum value that it can represent, is smaller than the ideal
value of the parameter.

* Both parameter overflow and precision loss are quantization errors, and the distinction between
them can be a fine one. The Detect Parameter overflow diagnostic reports all parameter
quantization errors greater than one bit. For very small parameter quantization errors, precision
loss will be reported rather than an overflow when

(Max + Slope) = Vigeal > (Min — Slope)
where

* Max is the maximum value representable by the parameter data type.
* Min is the minimum value representable by the parameter data type.
* Slope is the slope of the parameter data type (slope = 1 for integers).
* Vigea is the full-precision, ideal value of the parameter.

Command-Line Information
Parameter: ParameterPrecisionLossMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'warning'

Detect precision loss

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error

See Also

Related Examples

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-31

6 Diagnostics Parameters: Data Validity

Detect loss of tunability

6-32

Description

Select the diagnostic action to take when an expression with tunable variables is reduced to its
numerical equivalent in the generated code.

Category: Diagnostics

Settings

Default: warning for GRT targets | error for ERT targets

none

Take no action.
warning

Generate a warning.
error

Terminate simulation or code generation and generate an error.
Tips

» This diagnostic applies only to named tunable parameters (parameters with a non-Auto storage
class).

* The default value for Detect loss of tunability for ERT-based targets is error. When you switch
from a system target file that is not ERT-based to one that is ERT-based, Detect loss of tunability
is set to error. However, you can change the setting of Detect loss of tunability later.

» If a tunable workspace variable is modified by Mask Initialization code, or is used in an arithmetic
expression with unsupported operators or functions, the expression is reduced to its numeric
value and therefore cannot be tuned.

Command-Line Information

Parameter: ParameterTunabilitylLossMsg

Type: character vector

Value: 'none' | 'warning' | 'error’

Default: 'warning' for GRT targets | 'error' for ERT targets

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Detect loss of tunability

See Also

Related Examples

. Diagnosing Simulation Errors

. “Tunable Expression Limitations” (Simulink Coder)

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-33

6 Diagnostics Parameters: Data Validity

Detect read before write

Description

Select the diagnostic action to take if the model attempts to read data from a data store to which it
has not written data in this time step.

Category: Diagnostics

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or Simulink.Signal object in
a model workspace) use the setting specified by the block. For each global data store (defined by
a Simulink.Signal object in the base workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note During model referencing simulation in accelerator and rapid accelerator mode, if the Detect
read before write parameter is set to Enable all as warnings, Enable all as errors, or
Use local settings, Simulink temporarily changes the setting to Disable all.

You can use the Model Advisor to identify referenced models for which Simulink changes

configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, in the Modeling tab, click Model Advisor, then click OK.
Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model reference
simulation check.

Command-Line Information

Parameter: ReadBeforeWriteMsg

Value: 'UseLocalSettings' | 'DisableAll"' | 'EnableAllAsWarning' |
"EnableAllAsError'’

Default: 'UselLocalSettings'

6-34

Detect read before write

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

Simulink.Signal

Related Examples

. Diagnosing Simulation Errors

. “Local and Global Data Stores”

. Data Store Memory

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-35

6 Diagnostics Parameters: Data Validity

Detect write after read

6-36

Description

Select the diagnostic action to take if the model attempts to write data to a data store after previously
reading data from it in the current time step.

Category: Diagnostics

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or Simulink.Signal object in
a model workspace) use the setting specified by the block. For each global data store (defined by
a Simulink.Signal object in the base workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note During model referencing simulation in accelerator and rapid accelerator mode, if the Detect
write after read parameter is set to Enable all as warnings, Enable all as errors, or Use
local settings, Simulink temporarily changes the setting to Disable all.

You can use the Model Advisor to identify referenced models for which Simulink changes

configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, in the Modeling tab, click Model Advisor, then click OK.
Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model reference
simulation check.

Command-Line Information

Parameter: WriteAfterReadMsg

Value: 'UseLocalSettings' | 'DisableAll’ | 'EnableAllAsWarning' |
"EnableAllAsError'’

Default: 'UselLocalSettings'

Detect write after read

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

Simulink.Signal

Related Examples

. Diagnosing Simulation Errors

. “Local and Global Data Stores”

. Data Store Memory

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-37

6 Diagnostics Parameters: Data Validity

Detect write after write

Description

Select the diagnostic action to take if the model attempts to write data to a data store twice in
succession in the current time step.

Category: Diagnostics

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or Simulink.Signal object in
a model workspace) use the setting specified by the block. For each global data store (defined by
a Simulink.Signal object in the base workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note During model referencing simulation in accelerator and rapid accelerator mode, if the Detect
write after write parameter is set to Enable all as warnings, Enable all as errors, or
Use local settings, Simulink temporarily changes the setting to Disable all.

You can use the Model Advisor to identify referenced models for which Simulink changes

configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, in the Modeling tab, click Model Advisor, then click OK.
Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model reference
simulation check.

Command-Line Information

Parameter: WriteAfterWriteMsg

Value: 'UseLocalSettings' | 'DisableAll’ | 'EnableAllAsWarning' |
"EnableAllAsError'’

Default: 'UselLocalSettings'

6-38

Detect write after write

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

Simulink.Signal

Related Examples

. Diagnosing Simulation Errors

. “Local and Global Data Stores”

. Data Store Memory

. “Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-39

6 Diagnostics Parameters: Data Validity

Multitask data store

6-40

Description

Select the diagnostic action to take when one task reads data from a Data Store Memory block to
which another task writes data.

Category: Diagnostics

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Such a situation is safe only if one of the tasks cannot interrupt the other, such as when the data
store is a scalar and the writing task uses an atomic copy operation to update the store or the
target does not allow the tasks to preempt each other.

* You should disable this diagnostic (set it to none) only if the application warrants it, such as if the
application uses a cyclic scheduler that prevents tasks from preempting each other.

Command-Line Information
Parameter: MultiTaskDSMMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Simulink.Signal

Multitask data store

Related Examples

Diagnosing Simulation Errors

“Local and Global Data Stores”

Data Store Memory

“Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-41

6 Diagnostics Parameters: Data Validity

Duplicate data store names

6-42

Description

Select the diagnostic action to take when the model contains multiple data stores that have the same
name. The data stores can be defined with Data Store Memory blocks or Simulink.Signal objects.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tip

This diagnostic is useful for detecting errors that can occur when a lower-level data store
unexpectedly shadows a higher-level data store that has the same name.

Command-Line Information
Parameter: UniqueDataStoreMsg
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Simulink.Signal

Related Examples

. Diagnosing Simulation Errors

Duplicate data store names

“Local and Global Data Stores”
Data Store Memory
“Model Configuration Parameters: Data Validity Diagnostics” on page 6-2

6-43

Diagnostics Parameters: Model
Referencing

7 Diagnostics Parameters: Model Referencing

Model Configuration Parameters: Model Referencing
Diagnostics

7-2

The Diagnostics > Model Referencing category includes parameters for detecting issues related to

referenced models (Model blocks).

Parameter

Description

“Model block version mismatch” on page 7-3

Select the diagnostic action to take when loading
or updating this model if Simulink software
detects a mismatch between the version of the
model used to create or refresh a Model block in
this model and the referenced model's current
version.

“Port and parameter mismatch” on page 7-5

Select the diagnostic action to take if Simulink
software detects a port or parameter mismatch
during model loading or updating.

“Invalid root Inport/Outport block connection” on
page 7-7

Select the diagnostic action to take if Simulink
software detects invalid internal connections to
this model's root-level Output port blocks.

“Unsupported data logging” on page 7-11

Select the diagnostic action to take if this model
contains To Workspace blocks or Scope blocks
with data logging enabled.

“No explicit final value for model arguments” on
page 7-13

Select the diagnostic action to take when the final
value of a model argument is the default value
instead of an explicit value.

See Also

Related Examples

. “Model References”

. Diagnosing Simulation Errors

. Solver Diagnostics on page 9-2

. Sample Time Diagnostics on page 8-2

. Data Validity Diagnostics on page 6-2

. Type Conversion Diagnostics on page 11-2
. Connectivity Diagnostics on page 5-2

. Compatibility Diagnostics on page 4-2

Model block version mismatch

Model block version mismatch

Description

Select the diagnostic action to take when loading or updating this model if Simulink software detects
a mismatch between the version of the model used to create or refresh a Model block in this model
and the current version of the referenced model.

Category: Diagnostics

Settings
Default: none

none
Simulink software refreshes the Model block.
warning
Simulink software displays a warning and refreshes the Model block.
error
Simulink software displays an error message and does not refresh the Model block.

When you receive an error related to a Model block version mismatch, you can manually refresh
the Model block. Select the Model block. Then, on the Model Block tab, select Refresh.
Alternatively, use the Simulink.ModelReference. refresh function.

Tips

» Version mismatches can occur when you modify, save, and close a referenced model while the
model that references it is not loaded. For more information, see “Manage Model Versions and
Specify Model Properties”.

* Model block icons can display a message indicating version mismatches. To enable this feature,
from the parent model, on the Debug tab, select Information Overlays > Ref. Model Version.
The Model block displays a version mismatch, for example: Rev:1.0 != 1.2.

Command-Line Information

Parameter: ModelReferenceVersionMismatchMessage
Value: 'none’' | 'warning' | 'error’

Default: 'none’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

7 Diagnostics Parameters: Model Referencing

Application Setting
Safety precaution No recommendation
See Also

Related Examples

. “Model References”

. Diagnosing Simulation Errors

. “Model Version Numbers”

. “Model Configuration Parameters: Model Referencing Diagnostics” on page 7-2

Port and parameter mismatch

Port and parameter mismatch

Description

Select the diagnostic action to take when loading or updating this model if Simulink software detects
a port or parameter mismatch between a Model block and its referenced model.

Category: Diagnostics

Settings
Default: none

none
Simulink software refreshes the Model block.
warning
Simulink software displays a warning and refreshes the Model block.
error
Simulink software displays an error message and does not refresh the Model block.

When you receive an error related to a Model block port or parameter mismatch, you can
manually refresh the Model block. Select the Model block. Then, on the Model Block tab, select
Refresh. Alternatively, use the Simulink.ModelReference. refresh function.

Tips

* Port mismatches occur when the input and output ports of a Model block do not match the root-
level input and output ports of the model it references.

» Parameter mismatches occur when the parameter arguments recognized by the Model block do
not match the parameter arguments declared by the referenced model.

* Model block icons can display a message indicating port or parameter mismatches. To enable this
feature, from the parent model, on the Debug tab, select Information Overlays > Ref Model
I/0 Mismatch.

Command-Line Information

Parameter: ModelReferenceIOMismatchMessage
Value: 'none’' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

7-5

7 Diagnostics Parameters: Model Referencing

Application Setting
Safety precaution error
See Also

Related Examples

. “Model References”

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Model Referencing Diagnostics” on page 7-2

Invalid root Inport/Outport block connection

Invalid root Inport/Outport block connection

Description

Select the diagnostic action to take if Simulink software detects invalid internal connections to this
model's root-level Output port blocks.

Category: Diagnostics

Settings
Default: none

none
Simulink software silently inserts hidden blocks to satisfy the constraints wherever possible.
warning

Simulink software warns you that a connection constraint has been violated and attempts to
satisfy the constraint by inserting hidden blocks.

error
Simulink software terminates the simulation or code generation and displays an error message.

Tips
* In some cases (such as function-call feedback loops), automatically inserted hidden blocks may

introduce delays and thus may change simulation results.

* Auto-inserting hidden blocks to eliminate root I/O problems stops at subsystem boundaries.
Therefore, you may need to manually modify models with subsystems that violate any of the
constraints below.

* The types of invalid internal connections are:

* A oot output port is connected directly or indirectly to more than one nonvirtual block port:

Gain
L
I—>
Ot

* A root output port is connected to a Ground block:

7-7

7 Diagnostics Parameters: Model Referencing

* Two root Outport blocks are connected to the same block port:

[>——-

In1 . Ot
Gain

—)
Out?
* An Outport block is connected to some elements of a block output and not others:

Ot
in Gain
Cut2

* An Outport block is connected more than once to the same element:

i,

- Ot

* The signal driving the root output port is a test point:

* The output port has a constant sample time, but the driving block has a non-constant sample
time:

Invalid root Inport/Outport block connection

1
Constant?

£

Ot

ol —»(T)
Out2

Subsystem

* The driving block has a constant sample time and multiple output ports, and one of the other
output ports of the block is a test point.

Zain
ol
[
1 g BT »(Z)
Constant Complex to Oty
Magnitude-Angle

* The root output port is conditionally computed, you are using Function Prototype Control or a
Encapsulated C++ target, and the Function Prototype specification or C++ target specification
states that the output variable corresponding to that root output port is returned by value.

Il
Qutt f—(1)

Enabled Subsystem

Command-Line Information
Parameter: ModelReferenceIOMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'none’

7 Diagnostics Parameters: Model Referencing

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples

. “Model Reference Requirements and Limitations”

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Model Referencing Diagnostics” on page 7-2

7-10

Unsupported data logging

Unsupported data logging

Description

Select the diagnostic action to take if this model contains To Workspace blocks or Scope blocks with
data logging enabled.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* The default action warns you that Simulink software does not support use of these blocks to log
data from referenced models.

* See “Models with Model Referencing: Overriding Signal Logging Settings” for information on how
to log signals from a reference to this model.

Command-Line Information

Parameter: ModelReferenceDatalLoggingMessage
Value: 'none' | ‘'warning' | 'error!’

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

7-11

7 Diagnostics Parameters: Model Referencing

See Also

Related Examples

. “Model References”

. Diagnosing Simulation Errors

. “Models with Model Referencing: Overriding Signal Logging Settings”

. To Workspace

. Scope

. “Model Configuration Parameters: Model Referencing Diagnostics” on page 7-2

7-12

No explicit final value for model arguments

No explicit final value for model arguments

Description

Select the diagnostic action to take when the topmost Model block that can set the value for a model
argument uses a default value instead of providing an explicit value.

In the Model Data Editor, Property Inspector, or Model Explorer, the default value for a model
argument displays as either <inherited> or <from below>.

+ If the Argument check box is selected, Simulink displays <inherited> to indicate that, in the
case that a model references the Model block, the model argument value is provided by the
parent.

» If the Argument check box is cleared, Simulink displays <from below> to indicate that its value
is provided by the last model to specify a value in the model hierarchy below.
At the command-line, a default value for a model argument is represented by an empty string.

The value of this configuration parameter in the top model applies to each model argument in the
model hierarchy.

Category: Diagnostics

Settings
Default: none

none

If the topmost Model block uses the default value for a model argument, Simulink uses the last
value specified in the model hierarchy below.

warning

If the topmost Model block uses the default value for a model argument, Simulink uses the last
value specified in the model hierarchy below, but displays a warning that the model argument
does not have an explicit final value.

error

If the topmost Model block uses a default value for a model argument, Simulink displays an error
message at compile time.

Command-Line Information

Parameter: ModelReferenceNoExplicitFinalValueMsg
Value: 'none' | 'warning' | 'error’

Default: 'none’

Recommended Settings

Application Setting
Debugging No impact

7-13

7 Diagnostics Parameters: Model Referencing

7-14

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples

“Model References”

Diagnosing Simulation Errors

“Parameterize Instances of a Reusable Referenced Model”

“Parameterize a Referenced Model Programmatically”

“Model Configuration Parameters: Model Referencing Diagnostics” on page 7-2

Diagnostics Parameters: Sample Time

8 Diagnostics Parameters: Sample Time

Model Configuration Parameters: Sample Time Diagnostics

8-2

The Diagnostics > Sample Time category includes parameters for detecting issues related to

sample time and sample time specifications.

Parameter

Description

“Source block specifies -1 sample time” on page
8-3

Select the diagnostic action to take if a source
block (such as a Sine Wave block) specifies a
sample time of -1.

“Multitask data transfer” on page 8-5

Select the diagnostic action to take if an invalid
rate transition occurred between two blocks
operating in multitasking mode.

“Single task data transfer” on page 8-7

Select the diagnostic action to take if a rate
transition occurred between two blocks operating
in single-tasking mode.

“Multitask conditionally executed subsystem” on
page 8-9

Select the diagnostic action to take if Simulink
software detects a subsystem that may cause
data corruption or non-deterministic behavior.

“Tasks with equal priority” on page 8-11

Select the diagnostic action to take if Simulink
software detects two tasks with equal priority
that can preempt each other in the target system.

“Exported tasks rate transition” on page 8-15

Select the diagnostic action to take if Simulink
software detects unspecified data transfers
between exported tasks.

“Enforce sample times specified by Signal
Specification blocks” on page 8-13

Select the diagnostic action to take if the sample
time of the source port of a signal specified by a
Signal Specification block differs from the
signal's destination port.

“Unspecified inheritability of sample time” on
page 8-16

Select the diagnostic action to take if this model
contains S-functions that do not specify whether
they preclude this model from inheriting their
sample times from a parent model.

See Also

Related Examples

. Diagnosing Simulation Errors

. Solver Diagnostics on page 9-2

. Data Validity Diagnostics on page 6-2

. Type Conversion Diagnostics on page 11-2
. Connectivity Diagnostics on page 5-2

. Compatibility Diagnostics on page 4-2

. Model Referencing Diagnostics on page 7-2

Source block specifies -1 sample time

Source block specifies -1 sample time

Description

Select the diagnostic action to take if a source block (such as a Sine Wave block) specifies a sample
time of -1.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* The Random Source block does not obey this parameter. If its Sample time parameter is set to -1,
the Random Source block inherits its sample time from its output port and never produces
warnings or errors.

* Some Communications Toolbox™ blocks internally inherit sample times, which can be a useful and
valid modeling technique. Set this parameter to none for these types of models.

Command-Line Information
Parameter: InheritedTsInSrcMsg
Value: 'none' | ‘'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

8-3

8 Diagnostics Parameters: Sample Time

See Also

Related Examples
. Diagnosing Simulation Errors
. “Model Configuration Parameters: Sample Time Diagnostics” on page 8-2

8-4

Multitask data transfer

Multitask data transfer

Description

Select the diagnostic action to take if an invalid rate transition occurred between two blocks
operating in multitasking mode.

Category: Diagnostics

Settings
Default: error

warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tips

* This parameter allows you to adjust error checking for sample rate transitions between blocks
that operate at different sample rates.

* Use this option for models of real-time multitasking systems to ensure detection of illegal rate
transitions between tasks that can result in a task's output being unavailable when needed by
another task. You can then use Rate Transition blocks to eliminate such illegal rate transitions
from the model.

Command-Line Information
Parameter: MultiTaskRateTransMsg
Value: 'warning' | 'error’

Default: 'error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples
. Rate Transition

8 Diagnostics Parameters: Sample Time

. “Model Execution and Rate Transitions” (Simulink Coder)

. Single-Tasking and Multitasking Execution Modes (Simulink Coder)
. “Handle Rate Transitions” (Simulink Coder)

. “Treat each discrete rate as a separate task” on page 14-42

. Diagnosing Simulation Errors
. “Model Configuration Parameters: Sample Time Diagnostics” on page 8-2

8-6

Single task data transfer

Single task data transfer

Description

Select the diagnostic action to take if a rate transition occurred between two blocks operating in
single-tasking mode.

Category: Diagnostics

Settings

Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.

Tips

* This parameter allows you to adjust error checking for sample rate transitions between blocks
that operate at different sample rates.

» Use this parameter when you are modeling a single-tasking system. In such systems, task
synchronization is not an issue.

* Since variable step solvers are always single tasking, this parameter applies to them.

* The Single task data transfer parameter affects the blocks that are inserted if the
Automatically handle data transfers parameter is also selected. Those inserted blocks may
change the simulation results and block sorted order in some cases.

Command-Line Information
Parameter: SingleTaskRateTransMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none or error

8 Diagnostics Parameters: Sample Time

8-8

See Also

Related Examples

Rate Transition

“Model Execution and Rate Transitions” (Simulink Coder)

Single-Tasking and Multitasking Execution Modes (Simulink Coder)
“Handle Rate Transitions” (Simulink Coder)

“Treat each discrete rate as a separate task” on page 14-42

Diagnosing Simulation Errors

“Model Configuration Parameters: Sample Time Diagnostics” on page 8-2

Multitask conditionally executed subsystem

Multitask conditionally executed subsystem

Description

Select the diagnostic action to take if Simulink software detects a subsystem that may cause data
corruption or non-deterministic behavior.

Category: Diagnostics

Settings
Default: error

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tips
* These types of subsystems can be caused by either of the following conditions:

* Your model uses multitasking solver mode and it contains an enabled subsystem that operates
at multiple rates.

* Your model contains a conditionally executed subsystem that can reset its states and that
contains an asynchronous subsystem.

These types of subsystems can cause corrupted data or nondeterministic behavior in a real-time
system that uses code generated from the model.

* For models that use multitasking solver mode and contain an enabled subsystem that operates at
multiple rates, consider using single-tasking solver mode or using a single-rate enabled subsystem
instead.

* For models that contain a conditionally executed subsystem that can reset its states and that
contains an asynchronous subsystem, consider moving the asynchronous subsystem outside the
conditionally executed subsystem.

Command-Line Information
Parameter: MultiTaskCondExecSysMsg
Value: 'none' | 'warning' | 'error’
Default: 'error'

8-9

8 Diagnostics Parameters: Sample Time

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples

. “Treat each discrete rate as a separate task” on page 14-42

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Sample Time Diagnostics” on page 8-2

8-10

Tasks with equal priority

Tasks with equal priority

Description

Select the diagnostic action to take if Simulink software detects two tasks with equal priority that can
preempt each other in the target system.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips
» This condition can occur when one asynchronous task of the target represented by this model has

the same priority as one of the target's asynchronous tasks.

» This option must be set to Error if the target allows tasks having the same priority to preempt
each other.

Command-Line Information
Parameter: TasksWithSamePriorityMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none or error

8-11

8 Diagnostics Parameters: Sample Time

See Also

Related Examples

. Diagnosing Simulation Errors

. “Rate Transitions and Asynchronous Blocks” (Simulink Coder)

. “Model Configuration Parameters: Sample Time Diagnostics” on page 8-2

8-12

Enforce sample times specified by Signal Specification blocks

Enforce sample times specified by Signal Specification blocks

Description

Select the diagnostic action to take if the sample time of the source port of a signal specified by a
Signal Specification block differs from the signal's destination port.

Category: Diagnostics

Settings

Default: warning

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Note The setting of this diagnostic is ignored when the Default parameter behavior parameter in
the Code Generation > Optimization pane of the model Configuration Parameters is set to
Tunable.

Tips

» The Signal Specification block allows you to specify the attributes of the signal connected to its
input and output ports. If the specified attributes conflict with the attributes specified by the
blocks connected to its ports, Simulink software displays an error when it compiles the model, for
example, at the beginning of a simulation. If no conflict exists, Simulink software eliminates the
Signal Specification block from the compiled model.

* You can use the Signal Specification block to ensure that the actual attributes of a signal meet
desired attributes, or to ensure correct propagation of signal attributes throughout a model.

Command-Line Information
Parameter: SigSpecEnsureSampleTimeMsg
Value: 'none' | 'warning' | 'error’'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

8-13

8 Diagnostics Parameters: Sample Time

Application Setting
Efficiency No impact
Safety precaution error
See Also

Related Examples

. Diagnosing Simulation Errors

. Signal Specification

. “Model Configuration Parameters: Sample Time Diagnostics” on page 8-2

8-14

Exported tasks rate transition

Exported tasks rate transition

Description

Select the diagnostic action to take if Simulink software detects unspecified data transfers between

exported tasks.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: ExportedTasksRateTransMsg

Value: 'none' | 'warning' | 'error'
Default: 'none’

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact
No impact

8-15

8 Diagnostics Parameters: Sample Time

Unspecified inheritability of sample time

8-16

Description

Select the diagnostic action to take if this model contains S-functions that do not specify whether
they preclude this model from inheriting their sample times from a parent model.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Not specifying an inheritance rule may lead to incorrect simulation results.

* Simulink software checks for this condition only if the solver used to simulate this model is a fixed-
step discrete solver and the periodic sample time constraint for the solver is set to ensure sample
time independence

* For more information, see “Periodic sample time constraint” on page 14-59.

Command-Line Information
Parameter: UnknownTsInhSupMsg
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Unspecified inheritability of sample time

See Also

Related Examples

. Diagnosing Simulation Errors

. “Periodic sample time constraint” on page 14-59

. Solver Diagnostics on page 9-2

. “Model Configuration Parameters: Sample Time Diagnostics” on page 8-2

8-17

Diagnostics Parameters

9 Diagnostics Parameters

Model Configuration Parameters: Diagnostics

9-2

The Diagnostics category includes parameters for detecting issues related to solvers and solver

settings, for example, algebraic loops.

Parameter

Description

“Algebraic loop” on page 9-5

Select the diagnostic action to take if Simulink
software detects an algebraic loop while
compiling the model.

“Minimize algebraic loop” on page 9-7

Select the diagnostic action to take if artificial
algebraic loop minimization cannot be performed
for an atomic subsystem or Model block because
an input port has direct feedthrough.

“Block priority violation” on page 9-9

Select the diagnostic action to take if Simulink
software detects a block priority specification
error.

“Min step size violation” on page 9-11

Select the diagnostic action to take if Simulink
software detects that the next simulation step is
smaller than the minimum step size specified for
the model.

“Consecutive zero-crossings violation” on page 9-
13

Select the diagnostic action to take when
Simulink software detects that the number of
consecutive zero crossings exceeds the specified
maximum.

“Automatic solver parameter selection” on page
9-15

Select the diagnostic action to take if Simulink
software changes a solver parameter setting.

“Extraneous discrete derivative signals” on page
9-17

Select the diagnostic action to take when a
discrete signal appears to pass through a Model
block to the input of a block with continuous
states.

“State name clash” on page 9-19

Select the diagnostic action to take when a name
is used for more than one state in the model.

“Operating point restore interface checksum
mismatch” on page 9-23

Use this check to ensure that the interface
checksum is identical to the model checksum
before loading the OperatingPoint.

These configuration parameters are in the Advanced parameters section.

Parameter

Description

“Allow symbolic dimension specification” on page
2-111

Specify whether Simulink propagates dimension
symbols throughout the model and preserves
these symbols in the propagated signal
dimensions.

“Allowed unit systems” on page 2-46

Specify unit systems allowed in the model.

Model Configuration Parameters: Diagnostics

Parameter

Description

“Units inconsistency messages” on page 2-48

Specify if unit inconsistencies should be reported
as warnings. Select the diagnostic action to take
when the Simulink software detects unit
inconsistencies.

“Allow automatic unit conversions” on page 2-49

Allow automatic unit conversions in the model.

“Check undefined subsystem initial output” on
page 2-60

Specify whether to display a warning if the model
contains a conditionally executed subsystem in
which a block with a specified initial condition
drives an Outport block with an undefined initial
condition.

“Solver data inconsistency” on page 2-67

Select the diagnostic action to take if Simulink
software detects S-functions that have continuous
sample times, but do not produce consistent
results when executed multiple times.

“Ignored zero crossings” on page 2-69

Select the diagnostic action to take if Simulink
detects zero-crossings that are being ignored

“Masked zero crossings” on page 2-71

Select the diagnostic action to take if Simulink
detects zero-crossings that are being masked.

“Block diagram contains disabled library links”
on page 2-72

Select the diagnostic action to take when saving a
model containing disabled library links.

“Block diagram contains parameterized library
links” on page 2-74

Select the diagnostic action to take when saving a
model containing parameterized library links.

“Initial state is array” on page 2-75

Message behavior when the initial state is an
array

“Insufficient maximum identifier length” on page
2-77

For referenced models, specify diagnostic action
when the configuration parameter Maximum
identifier length does not provide enough
character length to make global identifiers
unique across models.

“Combine output and update methods for code
generation and simulation” on page 2-119

When output and update code is in one function,
force simulation execution order to be the same
as code generation order. For certain modeling
patterns, setting this parameter prevents a
potential simulation and code generation
mismatch. Setting this parameter might cause
artificial algebraic loops.

“Behavior when pregenerated library subsystem
code is missing” on page 2-123

When generating code for a model that contains
an instance of a reusable library subsystem with
a function interface, specify whether or not to
display a warning or an error when the model
cannot use pregenerated library code or
pregenerated library code is missing.

“FMU Import blocks” on page 2-129

When the debug execution mode is enabled, FMU
binaries are executed in a separate process.

9-3

9 Diagnostics Parameters

9-4

Parameter

Description

“Arithmetic operations in variant conditions” on
page 2-125

Specify the diagnostic action to take when
arithmetic operations are found in variant
conditions.

“Variant condition mismatch at signal source and
destination” on page 2-130

Specify the diagnostic action to take when there
are variant-related modeling issues that may
result in unused Simulink variables in the
generated code.

“Variant activation time inherited from
Simulink.VariantControl” on page 2-127

Specify the diagnostic action to take when a
variant block with its activation time set to
inherit from Simulink.VariantControl
has no variant control variable of type
Simulink.VariantControl.

“Variant configuration not used by top model” on
page 2-138

Specify the diagnostic action to take when
Simulink detects during simulation or Variant
Manager activation that a top-level model does
not use a referenced model for any of the
published variant configurations of the
referenced model.

See Also

Related Examples

. “Algebraic Loop Concepts”

. Diagnosing Simulation Errors

. Sample Time Diagnostics on page 8-2

. Data Validity Diagnostics on page 6-2

. Type Conversion Diagnostics on page 11-2
. Connectivity Diagnostics on page 5-2

. Compatibility Diagnostics on page 4-2

. Model Referencing Diagnostics on page 7-2

Algebraic loop

Algebraic loop

Description

Select the diagnostic action to take if Simulink software detects an algebraic loop while compiling the
model.

Category: Diagnostics

Settings

Default: warning

none

When the Simulink software detects an algebraic loop, the software tries to solve the algebraic
loop. If the software cannot solve the algebraic loop, it reports an error and the simulation
terminates.

warning

When Simulink software detects an algebraic loop, it displays a warning and tries to solve the
algebraic loop. If the software cannot solve the algebraic loop, it reports an error and the
simulation terminates.

error

When Simulink software detects an algebraic loop, it terminates the simulation, displays an error
message, and highlights the portion of the block diagram that comprises the loop.

Tips

* An algebraic loop generally occurs when an input port with direct feedthrough is driven by the
output of the same block, either directly, or by a feedback path through other blocks with direct
feedthrough. An example of an algebraic loop is this simple scalar loop.

u

—+ |,
* When a model contains an algebraic loop, Simulink software calls a loop-solving routine at each

time step. The loop solver performs iterations to determine the solution to the problem (if it can).
As a result, models with algebraic loops run slower than models without them.

* Use the error option to highlight algebraic loops when you simulate a model. This causes
Simulink software to display an error dialog (the Diagnostic Viewer) and recolor portions of the
diagram that represent the first algebraic loop that it detects. Simulink software uses red to color
the blocks and lines that constitute the loop. Closing the error dialog restores the diagram to its
original colors.

* See “Algebraic Loop Concepts” for more information.

9 Diagnostics Parameters

9-6

Command-Line Information
Parameter: AlgebraiclLoopMsg
Value: 'none' | ‘'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting

Debugging error

Traceability No impact

Efficiency No impact

Safety precaution error

See Also

Related Examples

. “Algebraic Loop Concepts”

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Diagnostics” on page 9-2

Minimize algebraic loop

Minimize algebraic loop

Description

Select the diagnostic action to take if artificial algebraic loop minimization cannot be performed for
an atomic subsystem or Model block because an input port has direct feedthrough.

When you set the Minimize algebraic loop occurrences parameter for an atomic subsystem or a
Model block, if Simulink detects an artificial algebraic loop, it attempts to eliminate the loop by
checking for non-direct-feedthrough blocks before simulating the model. If Simulink cannot minimize
the artificial algebraic loop, the simulation performs the diagnostic action specified by the Minimize
algebraic loop parameter.

Category: Diagnostics

Settings
Default: warning

none

Simulink takes no action.
warning

Simulink displays a warning that it cannot minimize the artificial algebraic loop.
error

Simulink terminates the simulation and displays an error that it cannot minimize the artificial
algebraic loop.

Tips
» If the port is involved in an artificial algebraic loop, Simulink software can remove the loop only if
at least one other input port in the loop lacks direct feedthrough.

* Simulink software cannot minimize artificial algebraic loops containing signals designated as test
points (see Working with Test Points).

Command-Line Information
Parameter: ArtificialAlgebraiclLoopMsg
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Efficiency No impact
Traceability No impact

9 Diagnostics Parameters

9-8

Application Setting
Safety precaution error
See Also

Related Examples

. “How Simulink Eliminates Artificial Algebraic Loops”

. Diagnosing Simulation Errors

. Working with Test Points

. “Model Configuration Parameters: Diagnostics” on page 9-2

Block priority violation

Block priority violation

Description
Select the diagnostic action to take if Simulink software detects a block priority specification error.

Category: Diagnostics

Settings

Default: warning

warning
When Simulink software detects a block priority specification error, it displays a warning.
error

When Simulink software detects a block priority specification error, it terminates the simulation
and displays an error message.

Tips

+ Simulink software allows you to assign update priorities to blocks. Simulink software executes the
output methods of higher priority blocks before those of lower priority blocks.

* Simulink software honors the block priorities that you specify only if they are consistent with the
Simulink block sorting algorithm. If Simulink software is unable to honor a user specified block
priority, it generates a block priority specification error.

Command-Line Information
Parameter: BlockPriorityViolationMsg
Value: 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples
. Controlling and Displaying the Sorted Order

9-9

9 Diagnostics Parameters

. Diagnosing Simulation Errors
. “Model Configuration Parameters: Diagnostics” on page 9-2

9-10

Min step size violation

Min step size violation

Description

Select the diagnostic action to take if Simulink software detects that the next simulation step is
smaller than the minimum step size specified for the model.

Category: Diagnostics

Settings
Default: warning

warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tips

* A minimum step size violation can occur if the specified error tolerance for the model requires a
step size smaller than the specified minimum step size. See “Min step size” on page 14-20 and
“Maximum order” on page 14-28 for more information.

» Simulink software allows you to specify the maximum number of consecutive minimum step size
violations permitted (see “Number of consecutive min steps” on page 14-32).

Command-Line Information
Parameter: MinStepSizeMsg
Value: 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Min step size” on page 14-20

9-11

9 Diagnostics Parameters

9-12

“Maximum order” on page 14-28

“Number of consecutive min steps” on page 14-32

“Purely Discrete Systems”

Diagnosing Simulation Errors

“Model Configuration Parameters: Diagnostics” on page 9-2

Consecutive zero-crossings violation

Consecutive zero-crossings violation

Description

Select the diagnostic action to take when Simulink software detects that the number of consecutive
zero crossings exceeds the specified maximum.

Category: Diagnostics

Settings
Default: error

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tips

* Ifyou select warning or error, Simulink software reports the current simulation time, the
number of consecutive zero crossings counted, and the type and name of the block in which
Simulink software detected the zero crossings.

» For more information, see “Preventing Excessive Zero Crossings”.

Dependency

This diagnostic applies only when you are using a variable-step solver and the zero-crossing control is
set to either Enable all or Use local settings.

Command-Line Information
Parameter: MaxConsecutiveZCsMsg
Value: 'none' | 'warning’

Default: 'error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution warning or error

9-13

9 Diagnostics Parameters

9-14

See Also

Related Examples

“Zero-Crossing Detection”

“Zero-crossing control” on page 14-49

“Number of consecutive zero crossings” on page 14-53
“Time tolerance” on page 14-51

Diagnosing Simulation Errors

“Model Configuration Parameters: Diagnostics” on page 9-2

Automatic solver parameter selection

Automatic solver parameter selection

Description

Select the diagnostic action to take if Simulink software changes a solver parameter setting.

Category: Diagnostics

Settings

Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.

Tips
When enabled, this option notifies you if:

» Simulink changes a user-modified parameter to make it consistent with other model settings.

* Simulink automatically selects solver parameters for the model, such as FixedStepSize.

For example, if you simulate a discrete model that specifies a continuous solver, Simulink changes the
solver type to discrete and displays a warning about this change.

Command-Line Information
Parameter: SolverPrmCheckMsg
Value: 'none’' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

9-15

9 Diagnostics Parameters

See Also

Related Examples

. Diagnosing Simulation Errors

. Choosing a Solver

. “Model Configuration Parameters: Diagnostics” on page 9-2

9-16

Extraneous discrete derivative signals

Extraneous discrete derivative signals

Description

Select the diagnostic action to take when a discrete signal appears to pass through a Model block to
the input of a block with continuous states.

Category: Diagnostics

Settings

Default: error

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.

Tips

» This error can occur if a discrete signal passes through a Model block to the input of a block with
continuous states, such as an Integrator block. In this case, Simulink software cannot determine
with certainty the minimum rate at which it needs to reset the solver to solve this model
accurately.

» If this diagnostic is set to none or warning, Simulink software resets the solver whenever the
value of the discrete signal changes. This ensures accurate simulation of the model if the discrete
signal is the source of the signal entering the block with continuous states. However, if the
discrete signal is not the source of the signal entering the block with continuous states, resetting
the solver at the rate the discrete signal changes can lead to the solver being reset more
frequently than necessary, slowing down the simulation.

» If this diagnostic is set to error, Simulink software halts when compiling this model and displays
an error.

Dependency

This diagnostic applies only when you are using a variable-step ode solver and the block diagram
contains Model blocks.

Command-Line Information

Parameter: ModelReferenceExtraNoncontSigs
Value: 'none' | ‘'warning' | 'error!’

Default: 'error'

9-17

9 Diagnostics Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. Diagnosing Simulation Errors

. Choosing a Solver

. “Model Configuration Parameters: Diagnostics” on page 9-2

9-18

State name clash

State name clash

Description
Select the diagnostic action to take when a name is used for more than one state in the model.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.

Tips
* This diagnostic applies for continuous and discrete states during simulation.

» This diagnostic applies only if you save states to the MATLAB workspace using the format
Structure or Structure with time. If you do not save states in structure format, the state names
are not used, and therefore the diagnostic will not warn you about a naming conflict.

Command-Line Information
Parameter: StateNameClashWarn
Value: 'none' | 'warning’

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Import/Export” on page 3-2
. “Save Run-Time Data from Simulation”

9-19

9 Diagnostics Parameters

. “Model Configuration Parameters: Diagnostics” on page 9-2

9-20

SimState interface checksum mismatch

SimState interface checksum mismatch

Note SimState interface checksum mismatch is not recommended. Use Operating point
interface checksum mismatch instead.

Description

Use this check to ensure that the interface checksum is saved in a SimState object, identical to the
model checksum before loading the operating point.

Category: Diagnostics

Settings
Default: warning

none

Simulink software does not compare the interface checksum to the model checksum.
warning

The interface checksum in the SimState is different than the model checksum.
error

When Simulink detects that a change in the configuration settings occurred after saving the
SimState, it does not load the SimState and reports an error.

Command-Line Information

Parameter: SimStateInterfaceChecksumMismatchMsg
Value: 'warning' | 'error' | 'none’

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Simulink.BlockDiagram.getChecksum

Related Examples

. “Use Model Operating Point for Faster Simulation Workflow”

9-21

9 Diagnostics Parameters

. “Model Configuration Parameters: Diagnostics” on page 9-2

9-22

Operating point restore interface checksum mismatch

Operating point restore interface checksum mismatch

Description

Use this check to ensure that the interface checksum is identical to the model checksum before
loading the Simulink.op.ModelOperatingPoint object specified using the Initial state
parameter.

Category: Diagnostics

Settings

Default: warning

none

Simulink software does not compare the interface checksum to the model checksum.
warning

The interface checksum in the operating point is different than the model checksum.
error

When Simulink detects that a change in the configuration settings occurred after saving the
operating point, it does not load the ModelOperatingPoint object and reports an error.

Command-Line Information

Parameter: OperatingPointInterfaceChecksumMismatchMsg
Value: 'warning' | 'error' | 'none'

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Simulink.BlockDiagram.getChecksum

Related Examples
. “Use Model Operating Point for Faster Simulation Workflow”

. “Model Configuration Parameters: Diagnostics” on page 9-2

9-23

Diagnostics Parameters: Stateflow

10 Diagnostics Parameters: Stateflow

Model Configuration Parameters: Stateflow Diagnostics

10-2

The Diagnostics > Stateflow category includes parameters for detecting issues related to Stateflow

charts.

Parameter

Description

“Unused data, events, messages, and functions”
on page 10-4

Select the diagnostic action to take for detection
of unused data, events, and messages in a chart.
Removing unused data, events, and messages can
minimize the size of your model.

“Unexpected backtracking” on page 10-6

Select the diagnostic action to take when a chart
junction has both of the following conditions. The
junction:

* Does not have an unconditional transition path
to a state or a terminal junction

* Has multiple transition paths leading to it

“Invalid input data access in chart initialization”
on page 10-8

Select the diagnostic action to take when a chart:

* Has the ExecuteAtInitialization
property set to true

* Accesses input data on a default transition or
associated state entry actions, which execute
at chart initialization

“No unconditional default transitions” on page
10-10

Select the diagnostic action to take when a chart
does not have an unconditional default transition
to a state.

“Transition outside natural parent” on page 10-
12

Select the diagnostic action to take when a chart
contains a transition that loops outside of the
parent state or junction.

“Undirected event broadcasts” on page 10-13

Select the diagnostic action to take when a chart
contains undirected local event broadcasts.

“Transition action specified before condition
action” on page 10-14

Select the diagnostic action to take when a
transition action executes before a condition
action in a transition path with multiple transition
segments.

“Read-before-write to output in Moore chart” on
page 10-16

Select the diagnostic action to take when a
Moore chart uses a previous output value to
determine the current state.

“Absolute time temporal value shorter than
sampling period” on page 10-17

Select the diagnostic action to take when a state
or transition absolute time operator uses a time
value that is shorter than the sample time for the
Stateflow block.

“Self transition on leaf state” on page 10-18

Select the diagnostic action to take when you can
remove a self-transition on a leaf state.

Model Configuration Parameters: Stateflow Diagnostics

Parameter

Description

“Execute-at-Initialization disabled in presence of
input events” on page 10-19

Select the diagnostic action to take when
Stateflow detects triggered or enabled charts
that are not running at initialization.

“Unreachable execution path” on page 10-23

Select the diagnostic action to take when there
are chart constructs not on a valid execution
path.

This configuration parameter is in the Advanced parameters section.

Parameter

Description

“Use of machine-parented data instead of Data
Store Memory” on page 10-21

Select the diagnostic action to take when
Stateflow detects machine-parented data that can
replace with chart-parented data of scope Data
Store Memory.

See Also

Related Examples

. Diagnosing Simulation Errors

. Solver Diagnostics on page 9-2

. Sample Time Diagnostics on page 8-2

. Data Validity Diagnostics on page 6-2

. Type Conversion Diagnostics on page 11-2
. Connectivity Diagnostics on page 5-2

. Compatibility Diagnostics on page 4-2

. Model Referencing Diagnostics on page 7-2

10-3

10 Diagnostics Parameters: Stateflow

Unused data, events, messages, and functions

Description

Select the diagnostic action to take for detection of unused data, events, messages, and functions in a
chart. Removing unused data, events, messages, and functions can minimize the size of your model.

Category: Diagnostics

Settings

Default: warning

none
No warning or error appears.
warning

A warning appears, with a link to delete the unused data, event, or message in your chart.
error

An error appears and stops the simulation.
Tip
This diagnostic does not detect these types of data and events:

* Machine-parented data
* Inputs and outputs of MATLAB functions
* Input events

Command-Line Information
Parameter: SFUnusedDataAndEventsDiag
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution warning

10-4

Unused data, events, messages, and functions

See Also

Related Examples

. “Synchronize Model Components by Broadcasting Events” (Stateflow)
. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

10-5

10 Diagnostics Parameters: Stateflow

Unexpected backtracking

10-6

Description

Select the diagnostic action to take when a chart junction has both of the following conditions. The
junction:

* Does not have an unconditional transition path to a state or a terminal junction

* Has multiple transition paths leading to it
This chart configuration can lead to unwanted backtracking during simulation.

Category: Diagnostics

Settings

Default: error

none
No warning or error appears.
warning

A warning appears, with a link to examples of unwanted backtracking.
error

An error appears and stops the simulation.
Tip

To avoid unwanted backtracking, consider adding an unconditional transition from the chart junction
to a terminal junction.

Command-Line Information
Parameter: SFUnexpectedBacktrackingDiag
Value: 'none' | ‘'warning' | 'error!’
Default: 'error'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
No impact (for production code generation)
Safety precaution error

Unexpected backtracking

See Also

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2
. “Best Practices for Creating Flow Charts” (Stateflow)

. “Backtrack in Flow Charts” (Stateflow)

. “Detect Modeling Errors During Edit Time” (Stateflow)

. “Unexpected backtracking” (Stateflow)

10-7

10 Diagnostics Parameters: Stateflow

Invalid input data access in chart initialization

10-8

Description

Select the diagnostic action to take when a chart:

* Has the ExecuteAtInitialization property set to true
* Accesses input data on a default transition or associated state entry actions, which execute at
chart initialization

In this chart configuration, blocks that connect to chart input ports might not initialize their outputs
during initialization. To locate this configuration in your model and correct it, use this diagnostic.

When using Embedded Coder for a component model configured with a service interface, this
parameter is not relevant and, therefore, is not supported.

Category: Diagnostics

Settings
Default: warning

none
No warning or error appears.
warning
A warning appears.
error
An error appears and stops the simulation.

Tip
In charts that do not contain states, the ExecuteAtInitialization property has no effect.

Command-Line Information

Parameter: SFInvalidInputDataAccessInChartInitDiag
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

No impact (for production code generation)

Invalid input data access in chart initialization

Application Setting
Safety precaution error
See Also

Related Examples
. “Execution of a Chart at Initialization” (Stateflow)
. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

10-9

10 Diagnostics Parameters: Stateflow

No unconditional default transitions

Description

Select the diagnostic action to take when a chart does not have an unconditional default transition to
a state.

This chart construct can cause inconsistency errors. To locate this construct in your model and
correct it, use this diagnostic. If a chart contains local event broadcasts or implicit events, detection
of a state inconsistency might not be possible until run time.

Category: Diagnostics

Settings
Default: error

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFNoUnconditionalDefaultTransitionDiag
Value: 'none' | 'warning' | 'error’

Default: 'warning'

Recommended Settings

Application Setting
Debugging error
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

Related Examples
. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2
. “Transition Between Operating Modes” (Stateflow)

10-10

No unconditional default transitions

“Detect State Inconsistencies” (Stateflow)
“Detect Modeling Errors During Edit Time” (Stateflow)
“Default transition path does not terminate in a state” (Stateflow)

10-11

10 Diagnostics Parameters: Stateflow

Transition outside natural parent

10-12

Description

Select the diagnostic action to take when a chart contains a transition that loops outside of the parent
state or junction.

Category: Diagnostics

Settings

Default: warning

none
No warning or error appears.
warning
A warning appears.
error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionOutsideNaturalParentDiag
Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

. “Transition Between Operating Modes” (Stateflow)

. “Detect Modeling Errors During Edit Time” (Stateflow)

. “Transition loops outside natural parent” (Stateflow)

. “Unconditional path out of state with during actions or child states” (Stateflow)

Undirected event broadcasts

Undirected event broadcasts

Description
Select the diagnostic action to take when a chart contains undirected local event broadcasts.

Undirected local event broadcasts can cause unwanted recursive behavior in a chart and inefficient
code generation. To flag these types of event broadcasts and fix them, use this diagnostic.

Category: Diagnostics

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFUndirectedBroadcastEventsDiag
Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency warning
Safety precaution error
See Also

Related Examples

. “Avoid Unwanted Recursion in a Chart” (Stateflow)
. “Broadcast Local Events to Synchronize Parallel States” (Stateflow)
. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

10-13

10 Diagnostics Parameters: Stateflow

Transition action specified before condition action

Description

Select the diagnostic action to take when a transition action executes before a condition action in a
transition path with multiple transition segments.

When a transition with a specified transition action precedes a transition with a specified condition
action in the same transition path, out-of-order execution can occur. To flag such behavior in your
chart and fix it, use this diagnostic.

Category: Diagnostics

Settings

Default: warning

none
No warning or error appears.
warning
A warning appears.
error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionActionBeforeConditionDiag
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability warning
Efficiency warning
Safety precaution error
See Also

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2
. “Transition Between Operating Modes” (Stateflow)

. “Detect Modeling Errors During Edit Time” (Stateflow)

10-14

Transition action specified before condition action

“Transition action precedes a condition action along this path” (Stateflow)

10-15

10 Diagnostics Parameters: Stateflow

Read-before-write to output in Moore chart

Description

Select the diagnostic action to take when a Moore chart uses a previous output value to determine
the current state. This behavior violates Moore machine semantics. In a Moore machine, output is a
function of current state only. To allow output values from the previous time step in calculating
current state, set this diagnostic to warning or none.

Category: Diagnostics

Settings

Default: error

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFOutputUsedAsStateInMooreChartDiag
Value: 'none' | 'warning' | 'error’'

Default: 'error'

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency error
Safety precaution error
See Also

Related Examples
. “Design Considerations for Moore Charts” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

10-16

Absolute time temporal value shorter than sampling period

Absolute time temporal value shorter than sampling period

Description

Select the diagnostic action to take when a state or transition absolute time operator uses a time
value that is shorter than the sample time for the Stateflow block. Stateflow cannot update states in
smaller increments than the sample time for the block. For example, a model with a sample rate of
0.1 sec and an operator after(5,usec) triggers this diagnostic. If this parameter is set to
warning or none, then the operator is evaluated as true at every time step.

Category: Diagnostics

Settings

Default: warning

none
No warning or error appears.
warning
A warning appears.
error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFTemporalDelaySmallerThanSampleTimeDiag
Value: 'none' | ‘'warning' | 'error!’

Default: 'warning'

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency error
Safety precaution error
See Also

Related Examples

. “Update Method” (Stateflow)

. “Control Chart Execution by Using Temporal Logic” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

10-17

10 Diagnostics Parameters: Stateflow

Self transition on leaf state

Description

Select the diagnostic action to take when you can remove a self-transition on a leaf state. Some self-
transitions with no actions in the leaf state or on the self-transition have no effect on chart execution.
Removing these transitions simplifies the state diagram.

Category: Diagnostics

Settings
Default: warning

none
No warning or error appears.
warning
A warning appears.
error
An error appears and stops the simulation.

Command-Line Information
Parameter: SFSelfTransitionDiag
Value: 'none' | 'warning' | 'error’
Default: 'warning'

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency No impact
Safety precaution error
See Also

Related Examples
. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

10-18

Execute-at-Initialization disabled in presence of input events

Execute-at-Initialization disabled in presence of input events

Description

Select the diagnostic action to take when Stateflow detects triggered or enabled charts that are not
running at initialization. When the chart does not execute at initialization, then the chart default
transitions are processed at the first input event. Until then, any data that you initialize in the chart
or active state data is not valid at time 0.

To initialize the chart configuration at time 0 rather than at the first input event, select the chart
property Execute (enter) Chart At Initialization.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFExecutionAtInitializationDiag
Value: 'none' | 'warning' | 'error’

Default: 'warning'

Recommended Settings

Application Setting
Debugging error
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples
. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2
. “Execution of a Chart at Initialization” (Stateflow)

10-19

10 Diagnostics Parameters: Stateflow

. “Specify Properties for Stateflow Charts” (Stateflow)

10-20

Use of machine-parented data instead of Data Store Memory

Use of machine-parented data instead of Data Store Memory

Description

Select the diagnostic action to take when Stateflow detects machine-parented data that you can
replace with chart-parented data of scope Data Store Memory.

Note Machine-parented data will no longer be supported in a future release. Use the Upgrade
Advisor to convert machine-parented data to chart-parented data store memory. For more
information, see “Consult the Upgrade Advisor” and “Check for machine-parented data”.

Category: Diagnostics

Settings
Default: error

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFMachineParentedDataDiag
Value: 'none' | ‘'warning' | 'error’
Default: 'error'

Recommended Settings

Application Setting
Debugging error
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Related Examples

. “Best Practices for Using Data in Charts” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2

10-21

10 Diagnostics Parameters: Stateflow

. “Consult the Upgrade Advisor”
. “Check for machine-parented data”

10-22

Unreachable execution path

Unreachable execution path

Description

Select the diagnostic action to take when there are chart constructs not on a valid execution path.

These constructs can cause unreachable execution paths:

* Dangling transitions not connected to a destination state, junction, or port

¢

* Transition shadowing caused by an unconditional transition that prevents other transitions from

the same source from executing

i
A
2 =
[Condition]

» States, junctions, or ports not connected with a transition from a reachable source

®

* Unconditional transitions leading out of a state that prevent the execution of the during actions

in the state and the transitions between child states

(n]
i

A
du: DuringAction;

A

Category: Diagnostics

B2

/T

10-23

10 Diagnostics Parameters: Stateflow

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.
Tip

This diagnostic does not detect unreachable execution paths caused by transition conditions that are
always true or false. For example, in this chart, the diagnostic does not detect that the unconditional
transition to state D is never valid.

B
o

T) [condition]
—
o,
A ? C
o)2 i
" [~condition]

{,
e

If you have Simulink Design Verifier, you can use dead logic detection to analyze your chart for this
type of unreachable execution path. For more information, see “Dead Logic Detection” (Simulink
Design Verifier).

Command-Line Information
Parameter: SFUnreachableExecutionPathDiag
Value: 'none' | ‘'warning' | 'error!’

Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact

10-24

Unreachable execution path

Application Setting
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 10-2
. “Detect Modeling Errors During Edit Time” (Stateflow)
. “Dead Logic Detection” (Simulink Design Verifier)

10-25

Diagnostics Parameters: Type
Conversion

11 Diagnostics Parameters: Type Conversion

Model Configuration Parameters: Type Conversion Diagnostics

11-2

The Diagnostics > Type Conversion category includes parameters for detecting issues related to
data type conversions (for example, from int32 to single).

Parameter

Description

“Unnecessary type conversions” on page 11-3

Select the diagnostic action to take when
Simulink software detects a Data Type
Conversion block used where no type conversion
is necessary.

“Vector/matrix block input conversion” on page
11-4

Select the diagnostic action to take when
Simulink software detects a vector-to-matrix or
matrix-to-vector conversion at a block input.

“32-bit integer to single precision float
conversion” on page 11-6

Select the diagnostic action to take if Simulink
software detects a 32-bit integer value was
converted to a floating-point value.

“Detect underflow” on page 11-7

Select the diagnostic action to take if Simulink
software detects a 32-bit integer value was
converted to a floating-point value.

“Detect precision loss” on page 11-9

Specifies diagnostic action to take when a fixed-
point constant precision loss occurs during
simulation.

“Detect overflow” on page 11-11

Specifies diagnostic action to take when a fixed-
point constant overflow occurs during simulation.

See Also

Related Examples

. Diagnosing Simulation Errors

. “Data Types Supported by Simulink”

. Solver Diagnostics on page 9-2

. Sample Time Diagnostics on page 8-2

. Data Validity Diagnostics on page 6-2

. Connectivity Diagnostics on page 5-2

. Compatibility Diagnostics on page 4-2

. Model Referencing Diagnostics on page 7-2

Unnecessary type conversions

Unnecessary type conversions

Description

Select the diagnostic action to take when Simulink software detects a Data Type Conversion block
used where no type conversion is necessary.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Command-Line Information

Parameter: UnnecessaryDatatypeConvMsg

Value: 'none' | 'warning’
Default: 'none’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution warning

See Also

Related Examples

. Diagnosing Simulation Errors

. Data Type Conversion

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 11-2

11-3

11 Diagnostics Parameters: Type Conversion

Vector/matrix block input conversion

11-4

Description

Select the diagnostic action to take when Simulink software detects a vector-to-matrix or matrix-to-
vector conversion at a block input.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

Simulink software converts vectors to row or column matrices and row or column matrices to vectors
under the following circumstances:

+ If avector signal is connected to an input that requires a matrix, Simulink software converts the
vector to a one-row or one-column matrix.

* If a one-column or one-row matrix is connected to an input that requires a vector, Simulink
software converts the matrix to a vector.

+ If the inputs to a block consist of a mixture of vectors and matrices and the matrix inputs all have
one column or one row, Simulink software converts the vectors to matrices having one column or
one row, respectively.

Command-Line Information
Parameter: VectorMatrixConversionMsg
Value: 'none' | 'warning' | 'error'
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Vector/matrix block input conversion

See Also

Related Examples

. Diagnosing Simulation Errors

. Determining Output Signal Dimensions

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 11-2

11-5

11 Diagnostics Parameters: Type Conversion

32-bit integer to single precision float conversion

Description

Select the diagnostic action to take if Simulink software detects a 32-bit integer value was converted
to a floating-point value.

Category: Diagnostics

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.

Tip

Converting a 32-bit integer value to a floating-point value can result in a loss of precision. See
Working with Data Types for more information.

Command-Line Information
Parameter: Int32ToFloatConvMsg
Value: 'none' | 'warning’

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution warning
See Also

Related Examples

. Diagnosing Simulation Errors

. Working with Data Types

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 11-2

11-6

Detect underflow

Detect underflow

Specifies diagnostic action to take when a fixed-point constant underflow occurs during simulation.

Description

Select the diagnostic action to take if Simulink software detects a 32-bit integer value was converted
to a floating-point value.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

» This diagnostic applies only to fixed-point constants (net slope and net bias).

» Fixed-point constant underflow occurs when Simulink software encounters a fixed-point constant
whose data type does not have enough precision to represent the ideal value of the constant
because the ideal value is too small.

* When fixed-point constant underflow occurs, casting the ideal value to the data type causes the
value of the fixed-point constant to become zero, and therefore to differ from its ideal value.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstUnderflowMsg
Value: 'none' | ‘'warning' | 'error!’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

11-7

11 Diagnostics Parameters: Type Conversion

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. Net Slope and Net Bias Precision Issues (Fixed-Point Designer)
. “Model Configuration Parameters: Type Conversion Diagnostics” on page 11-2

11-8

Detect precision loss

Detect precision loss

Description

Specifies diagnostic action to take when a fixed-point constant precision loss occurs during
simulation.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
» This diagnostic applies only to fixed-point constants (net slope and net bias).

* Precision loss occurs when Simulink software converts a fixed-point constant to a data type which
does not have enough precision to represent the exact value of the constant. As a result, the
quantized value differs from the ideal value.

* Fixed-point constant precision loss differs from fixed-point constant overflow. Overflow occurs
when the range of the parameter's data type, that is, the maximum value that it can represent, is
smaller than the ideal value of the parameter.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstPrecisionLossMsg
Value: 'none' | 'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

11-9

11 Diagnostics Parameters: Type Conversion

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. Net Slope and Net Bias Precision Issues (Fixed-Point Designer)
. “Model Configuration Parameters: Type Conversion Diagnostics” on page 11-2

11-10

Detect overflow

Detect overflow

Description

Specifies diagnostic action to take when a fixed-point constant overflow occurs during simulation.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

» This diagnostic applies only to fixed-point constants (net slope and net bias).

* Overflow occurs when the Simulink software converts a fixed-point constant to a data type whose
range is not large enough to accommodate the ideal value of the constant. The ideal value is either
too large or too small to be represented by the data type. For example, suppose that the ideal
value is 200 and the converted data type is int8. Overflow occurs in this case because the
maximum value that int8 can represent is 127.

* Fixed-point constant overflow differs from fixed-point constant precision loss. Precision loss occurs
when the ideal fixed-point constant value is within the range of the data type and scaling being
used, but cannot be represented exactly.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstOverflowMsg
Value: 'none' | ‘'warning' | 'error’
Default: 'none’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

11-11

11 Diagnostics Parameters: Type Conversion

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. Net Slope and Net Bias Precision Issues (Fixed-Point Designer)
. “Model Configuration Parameters: Type Conversion Diagnostics” on page 11-2

11-12

Model Referencing Parameters

12 Model Referencing Parameters

Model Configuration Parameters: Model Referencing

12-2

The Model Referencing pane of the Configuration Parameters dialog box allows you to specify

options for:

* Including other models in this model.
* Including the current model in other models.

The option descriptions use the term this model to refer to the model that you are configuring and the
term referenced model to designate models referenced by this model.

To open the Configuration Parameters dialog box for the top model in a model hierarchy, in the
Simulink Toolstrip, on the Modeling tab, click Model Settings.

To open the Configuration Parameters dialog box for the current referenced model, on the Modeling
tab, click the Model Settings button arrow, then select Model Settings in the Referenced Model

section.

Parameter

Description

“Rebuild” on page 12-4

Select the method used to determine when to
rebuild simulation and code generation targets
for referenced models before updating,
simulating, or generating code from this model.

“Never rebuild diagnostic” on page 12-9

Select the diagnostic action that Simulink
software should take if it detects a model
reference target that needs to be rebuilt.

“Enable parallel model reference builds” on page
12-11

Specify whether to use automatic parallel
building of the model reference hierarchy
whenever possible.

“MATLAB worker initialization for builds” on
page 12-13

Specify how to initialize MATLAB workers for
parallel builds.

“Enable strict scheduling checks for referenced
models” on page 12-15

This parameter enables these checks for
referenced models:

* Scheduling order consistency of function-call
subsystems in a referenced export function
model

* Sample time consistency across the boundary
of a referenced export function model or
referenced rate-based model

“Total number of instances allowed per top
model” on page 12-16

Specify how many references to this model can
occur in another model.

“Propagate sizes of variable-size signals” on page
12-27

Select how variable-size signals propagate
through referenced models.

“Minimize algebraic loop occurrences” on page
12-20

Try to eliminate artificial algebraic loops from a
model that involve the current referenced model

Model Configuration Parameters: Model Referencing

Parameter

Description

“Propagate all signal labels out of the model” on
page 12-22

Pass propagated signal names to output signals of
Model block.

“Pass fixed-size scalar root inputs by value for
code generation” on page 12-18

Specify whether a model that references this
model passes its scalar inputs to this model by
value for code generation.

“Model dependencies” on page 12-29

Add user-created dependencies to the set of
known target dependencies by using the Model
dependencies parameter.

“Perform consistency check on parallel pool” on
page 12-31

Specify whether to perform a consistency check
on the parallel pool before starting a parallel
build.

“Include custom code for referenced models” on
page 2-121

Use custom code with Stateflow or with MATLAB
Function blocks during model reference
accelerator simulation.

“Use local solver when referencing model” on
page 12-25

Speed up simulation in model references using
local solvers

See Also
Model

Related Examples
. “Model Reference Basics”
. Model Dependencies

12-3

12 Model Referencing Parameters

Rebuild

12-4

Description

Select the method to determine when to rebuild simulation and Simulink Coder targets for referenced
models before updating, simulating, or generating code from the model.

Category: Model Referencing

Settings

Default: If any changes detected

Always

If

If

Always rebuild targets for referenced models. This setting requires the most processing time
because it can trigger unnecessary builds. To make all model reference targets up to date, use
this setting before you deploy a model.

any changes detected

Conditionally rebuild targets for referenced models when Simulink detects a change that could
affect simulation results. To perform extensive change detection on dependencies of referenced
models, use this setting.

If Simulink finds no changes in known dependencies, it computes the structural checksum of the
model. The structural checksum detects changes that occur in user-created dependencies that
are not specified using the Model dependencies configuration parameter. If the structural
checksum has changed, Simulink rebuilds the model reference target.

any changes in known dependencies detected

Conditionally rebuild targets for referenced models when Simulink detects a change that could
affect simulation results. To reduce the time required for change detection, use this setting.

If Simulink finds no changes in known or potential dependencies, it does not compute the
structural checksum of the model and does not rebuild the model reference target. To avoid
invalid simulation results, you must list all user-created dependencies in the Model
dependencies parameter.

Never

Do not rebuild targets for referenced models. This setting requires the least processing time and,
when available, uses Simulink cache files for faster simulations. To avoid rebuilds when
developing a model, use this setting.

If model reference targets are out of date, the simulation may present invalid results. To have
Simulink check for changes in known target dependencies and report if the model reference
targets may be out of date, use the Never rebuild diagnostic parameter. To manually rebuild
model reference targets, use the slbuild function.

For information on using and sharing Simulink cache files, see “Share Simulink Cache Files for
Faster Simulation”.

Rebuild

Definitions
Known target dependencies

Known target dependencies are files and data external to model files that Simulink examines for
changes when checking if a model reference target is up to date. Simulink automatically
computes a set of known target dependencies. Examples of known target dependencies are:

* Changes to the model workspace, if its data source is a MAT-file or MATLAB file

* Enumerated type definitions

» User-written S-functions and their TLC files

* Files specified in the Model dependencies parameter

» External files used by Stateflow, a MATLAB Function block, or a MATLAB System block

» Dataflow subsystems - Analysis of dataflow subsystems requires that the simulation target
rebuilds to profile and rebuilds again to partition the subsystem. In addition, the simulation
target must rebuild if the machine running the simulation has fewer cores than the subsystem
is partitioned to use, for example, if the simulation target was last built on a machine with a
greater number of cores. For more information, see “Simulation of Dataflow Domains” (DSP

System Toolbox).
Potential target dependencies

Potential target dependencies are files and data external to model files and model configuration
settings that Simulink examines for changes when checking if a model reference target is up to
date. Simulink automatically computes a set of potential target dependencies. Examples of
potential target dependencies are:

* Changes to global variables

* Changes to targets of models referenced by this model

* The Configuration Parameters > Diagnostics > Data Validity > Signal resolution
parameter when set to either Explicit and implicit or Explicit and warn implicit

Simulink examines each potential target dependency to determine whether its state triggers a
structural checksum check.

User-created dependencies

User-created dependencies are files that Simulink does not automatically identify, in spite of their
potential impact on simulation results. Examples of user-created dependencies are:

» MATLARB files that contain code executed by callbacks

* MAT-files that contain definitions for variables used by the model that are loaded as part of a
customized initialization script

You can add user-created dependencies to the set of known target dependencies by using the
Model dependencies parameter.

Structural checksum

A structural checksum is a computation used to detect changes in the model that can affect

simulation results. When Simulink computes the structural checksum, it loads and compiles the
model. To compile the model, Simulink must execute callbacks and access all variables that the
model uses. The structural checksum detects changes in user-created dependencies, regardless

of whether you have specified those user-created dependencies in the Model dependencies
parameter.

12-5

12 Model Referencing Parameters

For more information about the kinds of changes that affect the structural checksum, see
Simulink.BlockDiagram.getChecksum.

Tips

12-6

Models in a model hierarchy can have different rebuild settings. When you update, simulate, or
generate code for a model, the rebuild setting for that model applies to all its referenced models.

Models that execute in normal mode do not generate simulation targets and are unaffected by
Rebuild settings.

To improve rebuild detection speed and accuracy, use the Model dependencies on page 12-29
configuration parameter to specify user-created dependencies.

This flow chart describes the processing Simulink performs when you set Rebuild to either If
any changes detectedor If any changes in known dependencies detected.

known
target Yes
dependency
changed?

Build

model
hierarchy

Mo

Model file Yes
or library
changed?

Mo

Fotential
target Yas
dependency
trigger
detected?

Mo

; If any changes detected Structural Yes
Sggﬁgg > checksum Rebuild

changed?

If any changes in known Mo

dependencies detected
P .| Do not

“1 rebuild

Rebuild

» This example explains the difference between the If any changes detected and If any
changes in known dependencies detected settings.

If you change a MATLAB file that is executed as part of a callback script that you have not listed in
the Model dependencies parameter:

« If any changes detected causes a rebuild because the change affects the structural
checksum of the model.

« If any changes in known dependencies detected does not cause a rebuild because
no known target dependency has changed.

Dependency

Selecting Never enables the Never rebuild diagnostic on page 12-9 parameter.

Command-Line Information
Parameter: UpdateModelReferenceTargets

Value: 'Force' | 'IfOutOfDateOrStructuralChange' | 'IfOutOfDate' | 'AssumeUpToDate'
Default: 'IfOQutOfDateOrStructuralChange'

UpdateModelReferenceTargets Value Equivalent Rebuild Value

'Force' Always

'IfOutOfDateOrStructuralChange’ If any changes detected

'IfOutOfDate’ If any changes in known dependencies detected
"AssumeUpToDate’ Never

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution If any changes detected or Never

If you use the Never setting, then set the Never rebuild
diagnostic parameter to Error if rebuild
required.

Compatibility Considerations

Starting in R2019b, If any changes detected ignores cosmetic changes, such as repositioning a
block.

See Also

Blocks
Model

12-7

12 Model Referencing Parameters

Model Settings
Never rebuild diagnostic | Model dependencies

Functions
Simulink.BlockDiagram.getChecksum

Related Examples

. “Manage Simulation Targets for Referenced Models”
. “Share Simulink Cache Files for Faster Simulation”
. “Model Configuration Parameters: Model Referencing” on page 12-2

12-8

Never rebuild diagnostic

Never rebuild diagnostic

Description

Select the diagnostic action that Simulink software should take if it detects a model reference target
that needs to be rebuilt.

Category: Model Referencing

Settings
Default: Error if rebuild required

none
Simulink takes no action.
Warn if rebuild required
Simulink displays a warning.
Error if rebuild required
Simulink terminates the simulation and displays an error message.

Tip
If you set the Rebuild parameter to Never and set the Never rebuild diagnostic parameter to
Error if rebuild required orWarn if rebuild required, then Simulink:

* Performs the same change detection processing as for the If any changes in known
dependencies detected rebuild option setting, except it does not compare structural
checksums

* Issues an error or warning (depending on the Never rebuild diagnostic setting), if it detects a
change

* Never rebuilds the model reference target

Selecting None bypasses dependency checking, and thus enables faster updating, simulation, and
code generation. However, the None setting can cause models that are not up to date to malfunction
or generate incorrect results. For more information on the dependency checking, see “Rebuild” on
page 12-4.

Dependency

This parameter is enabled only if you select Never in the Rebuild field.

Command-Line Information

Parameter: CheckModelReferenceTargetMessage
Value: 'none' | ‘'warning' | 'error!’

Default: 'error'

12-9

12 Model Referencing Parameters

12-10

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Blocks
Model

Model Settings
Rebuild

Related Examples

. Diagnosing Simulation Errors

Setting

No impact

No impact

No impact

Error if rebuild required

. “Model Configuration Parameters: Model Referencing” on page 12-2

Enable parallel model reference builds

Enable parallel model reference builds

Description

Specify whether to use automatic parallel building of the model reference hierarchy whenever
possible.

Category: Model Referencing

Settings
Default: Off

|7On

Simulink software builds the model reference hierarchy in parallel whenever possible (based on
computing resources and the structure of the model reference hierarchy).

I off
Simulink never builds the model reference hierarchy in parallel.
Dependency

Selecting this option enables the MATLAB worker initialization for builds parameter. Parallel
building requires Parallel Computing Toolbox™.

Tip

You only need to set Enable parallel model reference builds for the top model of the model
reference hierarchy to which it applies.

Command-Line Information

Parameter: EnableParallelModelReferenceBuilds
Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Model

12-11

12 Model Referencing Parameters

Related Examples

. “Reduce Update Time for Referenced Models by Using Parallel Builds”
. “Reduce Build Time for Referenced Models by Using Parallel Builds” (Simulink Coder)
. “Model Configuration Parameters: Model Referencing” on page 12-2

12-12

MATLAB worker initialization for builds

MATLAB worker initialization for builds

Description
Specify how to initialize MATLAB workers for parallel builds.

Category: Model Referencing

Settings
Default: None

None

Simulink software takes no action. Specify this value if the child models in the model reference
hierarchy do not rely on anything in the base workspace beyond what they explicitly set up (for
example, with a model load function).

Copy base workspace

Simulink attempts to copy the base workspace to each MATLAB worker. Specify this value if you
use a setup script to prepare the base workspace for all models to use.

Load top model
Simulink loads the top model on each MATLAB worker. Specify this value if the top model in the

model reference hierarchy handles all of the base workspace setup (for example, with a model
load function).

Limitation

For values other than None, limitations apply to global variables in the base workspace. Global
variables are not propagated across parallel workers and do not reflect changes made by top and
child model scripts.

Dependency

Selecting the option Enable parallel model reference builds enables this parameter. Parallel
building requires Parallel Computing Toolbox.

Command-Line Information
Parameter: ParallelModelReferenceMATLABWorkerInit

Value: 'None' | 'Copy Base Workspace' | 'Load Top Model'
Default: 'None'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

12-13

12 Model Referencing Parameters

12-14

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Model

Related Examples

. “Reduce Update Time for Referenced Models by Using Parallel Builds”

. “Reduce Build Time for Referenced Models by Using Parallel Builds” (Simulink Coder)
. “Model Configuration Parameters: Model Referencing” on page 12-2

Enable strict scheduling checks for referenced models

Enable strict scheduling checks for referenced models

Description

This parameter enables these checks for referenced models:

* Scheduling order consistency of function-call subsystems in referenced export function models
* Sample time consistency across the boundary of referenced export function models

* Sample time consistency across the boundary of referenced rate-based models that are function-
call adapted.

Category: Model Referencing

Settings
Default: On

V' on
Simulink enforces strict checks on scheduling order and sample time consistency in referenced
models.

I~ off

Simulink does not enforce strict checks on scheduling order and sample time consistency in
referenced models.

Command-Line Information

Parameter: EnableRefExpFcnMdlSchedulingChecks
Value: 'on' | 'off'

Default: 'on'

See Also
Model

Related Examples

. “Export-Function Models Overview”

. “Sorting Rules for Explicitly Scheduled Model Components”

. “Model Configuration Parameters: Model Referencing” on page 12-2

12-15

12 Model Referencing Parameters

Total number of instances allowed per top model

12-16

Description
Specify how many references to this model can occur in another model.

Category: Model Referencing

Settings
Default: Multiple

Zero

The model cannot be referenced. An error occurs if a reference to the model occurs in another
model.

One

The model can be referenced at most once in a model reference hierarchy. An error occurs if
more than one reference exists.

Multiple

The model can be referenced more than once in a hierarchy, provided that it contains no
constructs that preclude multiple reference. An error occurs if the model cannot be referenced
multiple times, even if only one reference exists.

To use multiple instances of a referenced model in normal mode, use the Multiple setting. For
details, see “Simulate Multiple Referenced Model Instances in Normal Mode”.

Command-Line Information

Parameter: ModelReferenceNumInstancesAllowed
Value: 'Zero' | 'Single' | '"Multi’

Default: 'Multi’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Model

Related Examples

. Diagnosing Simulation Errors

Total number of instances allowed per top model

“Model Configuration Parameters: Model Referencing” on page 12-2

12-17

12 Model Referencing Parameters

Pass fixed-size scalar root inputs by value for code generation

12-18

Description
Specify whether a model that references this model passes its scalar inputs to this model by value.

Category: Model Referencing

Settings
Default: Off (GUI), 'on' (command-line)

¥ On
A model that references this model passes scalar inputs to this model by value.

™ off

The parent model passes the inputs by reference (it passes the addresses of the inputs rather
than the input values).

Tips
« This option is ignored in either of these two cases:

* The C function prototype control is not the default.
* The C++ encapsulation interface is not the default.

* Passing root inputs by value allows this model to read its scalar inputs from register or local
memory, which is faster than reading the inputs from their original locations.

* Enabling this parameter can result in the simulation behavior differing from the generated code
behavior under certain modeling semantics. Simulink reports cases where the modeling semantics
may result in inconsistent behaviors for simulation and for generated code. If the diagnostic
identifies an issue, latch the function-call subsystem inputs. For more information about latching
function-call subsystems, see “Context-dependent inputs” on page 5-17.

» If the Context-dependent inputs diagnostic reports no issues for a model, consider enabling the
Pass fixed-size scalar root inputs by value for code generation parameter, which usually
generates more efficient code for such a model.

» If you have a Simulink Coder license, selecting this option can affect reuse of code generated for
subsystems. See “Generate Reentrant Code from Subsystems” (Simulink Coder) for more
information.

* For SIM targets, a model that references this model passes inputs by reference, regardless of how
you set the Pass fixed-size scalar root inputs by value for code generation parameter.

Command-Line Information
Parameter:ModelReferencePassRootInputsByReference
Value: 'on' | 'off'

Default: 'on'

Pass fixed-size scalar root inputs by value for code generation

Note The command-line values are reverse of the settings values. Therefore, 'on' in the command
line corresponds to the description of “Off” in the settings section, and 'off' in the command line
corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

For the diagnostic action to take when the software has to
compute the input to a function-call subsystem, see
“Context-dependent inputs” on page 5-17.

See Also
Model

Related Examples

. “Using Function-Call Subsystems”
. “Generate Reentrant Code from Subsystems” (Simulink Coder)
. “Model Configuration Parameters: Model Referencing” on page 12-2

12-19

12 Model Referencing Parameters

Minimize algebraic loop occurrences

12-20

Description
Try to eliminate artificial algebraic loops from a model that involve the current referenced model.

Category: Model Referencing

Settings
Default: Off

|7On

Simulink software tries to eliminate artificial algebraic loops from a model that involve the
current referenced model.

I off

Simulink software does not try to eliminate artificial algebraic loops from a model that involve the
current referenced model.

Tips

Enabling this parameter together with the Simulink Coder Single output/update function
parameter results in an error.

Command-Line Information

Parameter: ModelReferenceMinAlgLoopOccurrences
Value: 'on' | 'off"'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Model

Related Examples
. “Algebraic Loop Concepts”
. “Model Blocks and Direct Feedthrough”

Minimize algebraic loop occurrences

Diagnosing Simulation Errors
“Model Configuration Parameters: Model Referencing” on page 12-2

12-21

12 Model Referencing Parameters

Propagate all signal labels out of the model

12-22

Description

Pass propagated signal names to output signals of Model block.

Category: Model Referencing

Settings

Default: On

|7On

Simulink propagates signal names to output signals of the Model block.

I off

Simulink does not propagate signal names to output signals of the Model block.

Tips

By default, each instance of a referenced model propagates signal labels. Clear the setting for any
instance that you do not want to propagate signal labels.

The following models illustrate the behavior when you use the default setting of the Propagate
all signal labels out of the model parameter of enabled for the referenced model. The output
signal from the Model block Out2 port displays the propagated signal name (chirp sig), whose

source is inside the referenced model.

" ex_sig_label_prop_referenced_model_config_param_on

. DonsEnt sig

Constant

11
shire_sg .

Chirp Signal Gato

D <chip_sig>
- Out2

From

Propagate all signal labels out of the model

" ex_sig_label_prop_parent_config_param_on b

ex_sig_label_prop_referenced_model_config_param_on

IEE—
Qutt <gonstant sg=

Gain

Gain1

Medel

Constant_Output

Qutzp———— = : >—h..2
“ < chirp_sig= Chim Butpt

The following models illustrate the behavior when you clear this parameter, if you enable signal

label propagation for every eligible signal. Inside the referenced model, signal label propagation
occurs as in any model. However, the output signal from the Model block Out2 port displays
empty brackets for the propagated signal label.

|i| ex_sig_label_prop_referenced_model_default

constEnt_sig @
Qutl
Constant
chinp_sig
‘Chirp Signal Goto

[A)

From

|¥a| ex_sig_label_prop_parent_default »

< chirp_sig>
Cut2

ex_sig_label_prop_referenced_meodel_default

ol f————» : 1
<constant_sg=
Constant_OCutput

Gain

IPEEEE——
o 9—;
Chirg, Output

Gain1

Model

Command-Line Information
Parameter: PropagateSignallLabelsOutOfModel

Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application
Debugging

Setting
No impact

12-23

12 Model Referencing Parameters

12-24

Application
Traceability
Efficiency

Safety precaution

See Also
Model

Related Examples
. “Signal Label Propagation”

Setting

No impact

No impact

No recommendation

. “Model Configuration Parameters: Model Referencing” on page 12-2

Use local solver when referencing model

Use local solver when referencing model

Description

Improve simulation performance in model references.

Category: Model Referencing

Settings
Default: Off

IFOn

Continuous states in the model are solved independently from the top by the solver specified in
the referenced Configuration Parameters.
I off

Continuous states in the model are solved by the top solver.

Tips

* Normally, Simulink uses one solver for the entire model and the solver specified by a referenced
model's configuration set is ignored. When this parameter is enabled, the model's continuous
states will be solved separately from the top model's solver. The local solver used follows the
solver settings in the configuration set of the referenced model.

* When this parameter is on, the software tries to speed up simulation by using inexpensive solvers
on slow states of the current referenced model.

Command-Line Information

Parameter:UseModelRefSolver
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off

Traceability No impact
Efficiency No recommendation
Safety precaution No impact

See Also

Model | “Local Solver Basics”

12-25

12 Model Referencing Parameters

Related Examples
. “Model Configuration Parameters: Model Referencing” on page 12-2

12-26

Propagate sizes of variable-size signals

Propagate sizes of variable-size signals

Description
Select how variable-size signals propagate through referenced models.

Category: Model Referencing

Settings

Default: Infer from blocks in model

Infer from blocks in model
Searches a referenced model and groups blocks into the following categories.

Category Description Example Blocks in This Category
1 Output signal size depends on |+ Switch block
input signal values. + Enabled Subsystem block with an Enable
block that sets Propagate sizes of
variable-size signals to During
execution
2 States require resetting when |¢ Unit Delay block
the input signal size changes. |, gpahled Subsystem block with an Enable
block that sets Propagate sizes of
variable-size signals to Only when
enabling
3 Output signal size depends on |Gain block
only the input signal size.

The search stops at the boundary of enable, function-call, and action subsystems because these
subsystems can specify when to propagate the size of a variable-size signal.

Simulink sets the propagation of variable-size signals for a referenced model as follows:

Referenced Model Contents Referenced Model Propagation of

Variable-Size Signals

One or more blocks in category 1, and all Supports During execution.

other blocks in category 3

One or more blocks in category 2, and all
other blocks in category 3

Supports Only when enabling.

Blocks in category 1 and category 2 Errors.

All blocks in category 3 with at least one Errors. In this case, Simulink cannot

conditionally executed subsystem that is not
an enable, function-call, or action subsystem

determine when to propagate sizes of
variable-size signals.

12-27

12 Model Referencing Parameters

12-28

Referenced Model Contents

Referenced Model Propagation of
Variable-Size Signals

All blocks in category 3 with only

Supports both Only with enabling and

conditionally executed subsystems that are [During execution.
enable, function-call, or action subsystems

Only when enabling

Propagates sizes of variable-size signals for the referenced model only when enabling (at Enable

method).
During execution

Propagates sizes of variable-size signals for the referenced model during execution (at Outputs

method).

Command-Line Information
Parameter: PropagateVarSize

Value: 'Infer from blocks in model' | 'Only when enabling'| 'During execution'
Default: 'Infer from blocks in model'

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also
Model

Related Examples

Setting

No impact

No impact

No impact

No recommendation

. “Model Configuration Parameters: Model Referencing” on page 12-2

Model dependencies

Model dependencies

Description

Model dependencies are files and data that potentially impact simulation results. Simulink does not

automatically identify user-created dependencies. Examples of user-created dependencies are:

* MATLARB files that contain code executed by callbacks

* MAT-files that contain definitions for variables used by the model that are loaded as part of a
customized initialization script

To avoid invalid simulation results, list all user-created dependencies in the Model dependencies
parameter. When determining whether a model reference target is up to date, Simulink examines
dependencies that it automatically identifies and files specified by the Model dependencies
parameter.

Category: Model Referencing

Settings
Default: '’

Specify dependencies as a cell array of character vectors, where each cell array entry is one of the
following:

* File name — Simulink looks on the MATLAB path for a file with the given name. If the file is not on
the MATLAB path, specify the path to the dependent file. The file name must include a file
extension, such as .mor .mat.

* Path to the dependent file — The path can be relative or absolute, and must include the file name.

* Folder — Simulink treats every file in that folder as a dependent file. Simulink does not include
files of subfolders of the folder you specify.

Cell array entries can include:

* Spaces

* The token $MDL as a prefix to a dependency to indicate that the path to the dependency is relative
to the location of this model file

* An asterisk (*) as a wild card
* A percent sign (%) to comment out a line
* An ellipsis (. . .) to continue a line

For example:

{'D:\Work\parameters.mat', '$MDL\mdlvars.mat',
'D:\Work\masks*.m'}

12-29

12 Model Referencing Parameters

12-30

Tips

To improve rebuild detection speed and accuracy, use the Model dependencies parameter to
specify user-created dependencies when the Rebuild on page 12-4 parameter is set to either If
any changes detectedor If any changes in known dependencies detected.

To prevent invalid simulation results, if the Rebuild setting is If any changes in known
dependencies detected, add every user-created dependency.

To help identify model dependencies, use the Dependency Analyzer. For more information, see
“Analyze Model Dependencies”.

If Simulink cannot find a specified dependent file when you update or simulate a model that
references this model, Simulink displays a warning.

The dependencies automatically include the model and linked library files, so you do not need to
specify those files with the Model dependencies parameter.

Command-Line Information
Parameter: ModelDependencies
Type: character vector

Value: any valid value

Default: '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Blocks

Model

Model Settings
Rebuild

Related Examples

“Model Configuration Parameters: Model Referencing” on page 12-2

Perform consistency check on parallel pool

Perform consistency check on parallel pool

Description

Specify if you want the Simulink software to perform checks on the parallel pool before starting a
parallel build.

The software performs these criteria checks:

* The pool is spmd compatible.

* The platform is consistent between workers and client.

* The workers have a Simulink Coder license.

* The workers have write access to the current working folder.

Category: Model Referencing

Settings
Default: On

¥ On
If a check fails, the parallel build stops, producing an error.

I off
If a check fails, a warning is issued and a serial build is performed.

Command-Line Information

Parameter: ParallelModelReferenceErrorOnInvalidPool
Value: 'on' | 'off'

Default: 'on'

See Also

Related Examples

. “Reduce Update Time for Referenced Models by Using Parallel Builds”
. “Reduce Build Time for Referenced Models by Using Parallel Builds” (Simulink Coder)
. “Model Configuration Parameters: Model Referencing” on page 12-2

12-31

Simulation Target Parameters

13 simulation Target Parameters

Model Configuration Parameters: Simulation Target

13-2

The Simulation Target category includes parameters for configuring the simulation target for a

model. In the Configuration Parameters dialog box, the following parameters are in the Simulation

Target pane.

Parameter

Description

Location

8

“GPU acceleration” on page 13-

Specify whether or not to
accelerate MATLAB Function
blocks on NVIDIA® GPUs. This
option requires a GPU Coder™
license.

“Language” on page 13-6

Specify C or C++ code
generation for simulation
targets.

“Include headers” on page 13-
11

Specify interface header code
containing types and function
declarations to import into
Simulink.

Code information tab

“Include directories” on page
13-14

Specify directories containing
header and source files.

Code information tab

“Source files” on page 13-16

Specify custom code source
files.

Code information tab

“Libraries” on page 13-17

Specify a list of static and/or
shared libraries that contain
custom object code to link into
the target.

Code information tab

“Defines” on page 13-19

Specify preprocessor macro
definitions to be added to the
compiler command line.

Code information tab

“Compiler flags” on page 13-20

Specify additional flags to be
added to the compiler command
line.

Code information tab

“Linker flags” on page 13-21

Specify additional flags to be
added to the linker command
line.

Code information tab

“Initialize code” on page 13-12

Specify C/C++ code to execute
at the start of simulation.

Additional source code tab

“Terminate code” on page 13-
13

Specify C/C++ code to execute
at the end of simulation.

Additional source code tab

“Additional code” on page 13-
10

Specify additional custom code
to import into Simulink.

Additional source code tab

“Simulate custom code in a
separate process” on page 13-
30

Run custom code in a separate
process outside of MATLAB
during model simulation.

Import settings tab

Model Configuration Parameters: Simulation Target

Parameter

Description

Location

“Enable custom code analysis”
on page 13-9

Specify whether or not to enable
Simulink Coverage and Simulink
Design Verifier support for
custom code.

Import settings tab

on page 13-26

for all external C functions used
by the C Caller block.

“Enable global variables as Specify the behavior of global |[Import settings tab
function interfaces” on page 13- |variables in custom code called
32 by the C Caller block.
“Undefined function and Specify undefined function Import settings tab
variable handling” on page 13- |behavior for all external C
28 functions called by C Caller,

MATLAB Function, MATLAB

System blocks or Stateflow

charts.
“Deterministic functions” on Specify whether custom code Import settings tab
page 13-22 functions are deterministic.
“Specify by function” on page |Specify which custom code Import settings tab
13-24 functions are deterministic.
“Default function array layout” |Specify the default array layout |Import settings tab

“Exception by function” on page
13-33

Specify the array layout for each
external C function used by the
C Caller block.

Import settings tab

“Target library” (Simulink
Coder)

Specify the target deep learning
library to use for simulation.

MKL - DNN requires a Simulink
Coder license.

CUDNN or TensorRT requires a
GPU Coder license.

“Auto tuning” (Simulink Coder)

Use auto tuning for cuDNN
library. Enabling auto tuning
allows the cuDNN library to find
the fastest convolution
algorithms.

This parameter requires
Simulink Coder and GPU Coder
licenses.

These configuration parameters are in the Advanced parameters section.

Parameter

Description

“Import custom code” on page 2-79

Specify whether or not to parse available custom
code variables and functions and compile custom
code into its own simulation target.

13-3

13 simulation Target Parameters

13-4

Parameter

Description

“Echo expressions without semicolons” on page
2-100

Enable run-time output in the MATLAB Command
Window, such as actions that do not terminate
with a semicolon.

Break on Ctrl+C on page 2-92

Enables responsiveness checks in code generated
for MATLAB Function blocks, Stateflow charts,
and dataflow domains.

“Generate typedefs for imported bus and
enumeration types” on page 2-109

Determines typedef handling and generation for
imported bus and enumeration data types in
Stateflow and MATLAB Function blocks.

Enable memory integrity checks on page 2-107

Detects violations of memory integrity in code
generated for MATLAB Function blocks and stops
execution with a diagnostic.

“Enable run-time recursion for MATLAB
functions” on page 2-95

Allow recursive functions in code that is
generated for MATLAB code that contains
recursive functions.

“Enable implicit expansion in MATLAB functions”
on page 2-94

Enable implicit expansion in code that is
generated for MATLAB code that contains binary
operations and functions.

“Compile-time recursion limit for MATLAB
functions” on page 2-93

For compile-time recursion, control the number of
copies of a function that are allowed in the
generated code.

“Block reduction” on page 2-86

Reduce execution time by collapsing or removing
groups of blocks.

“Compiler optimization level” on page 2-81

Sets the degree of optimization used by the
compiler when generating code for acceleration.

“Hardware acceleration” on page 2-122

Select whether or not to use hardware
acceleration and the level of hardware
acceleration.

“Conditional input branch execution” on page 2-
90

Improve model execution when the model
contains Switch and Multiport Switch blocks.

“Verbose accelerator builds” on page 2-83

Select the amount of information displayed
during code generation for Simulink Accelerator
mode, referenced model Accelerator mode, and
Rapid Accelerator mode.

“Dynamic memory allocation in MATLAB
functions” on page 2-96

Use dynamic memory allocation (malloc) for
variable-size arrays whose size (in bytes) is
greater than or equal to the dynamic memory
allocation threshold. This parameter applies to
MATLAB code in a MATLAB Function block, a
Stateflow chart, or a System object associated
with a MATLAB System block.

Model Configuration Parameters: Simulation Target

Parameter

Description

“Dynamic memory allocation threshold in
MATLAB functions” on page 2-98

Use dynamic memory allocation (malloc) for
variable-size arrays whose size (in bytes) is
greater than or equal to a threshold. This
parameter applies to MATLAB code in a MATLAB
Function block, a Stateflow chart, or a System
object associated with a MATLAB System block.

“Enable continuous-time MATLAB functions to
write to initialized persistent variables” on page
2-101

Enable continuous-time MATLAB functions to
write to initialized persistent variables. If
disabled, continuous-time MATLAB functions can
only initialize and read persistent variables.

“Allow setting breakpoints during simulation” on
page 2-103

Enable adding breakpoints in MATLAB Function
blocks, Stateflow charts, State Transition blocks,
and Truth Table blocks during simulation.

“Reserved names” on page 2-105

Enter the names of variables or functions in the
generated code that match the names of variables
or functions specified in custom code for a model
that contains MATLAB Function blocks, Stateflow
charts, or Truth Table blocks.

See Also

Related Examples

. “What Is Acceleration?”

. “How Acceleration Modes Work”

. “Determine Why Simulink Accelerator Is Regenerating Code”
. “Manage Simulation Targets for Referenced Models”

. “Speed Up Simulation” (Stateflow)

13-5

13 simulation Target Parameters

Language

13-6

Description

Specify C or C++ code generation for simulation targets. This configuration parameter affects:

* Model reference simulation targets.
* Rapid accelerator simulation targets.

* Custom code you implement with C Function blocks, C Caller blocks, MATLAB Function blocks,
MATLAB System blocks, and Stateflow charts. If Import custom code is selected, available
custom code variables and functions are parsed.

The Simulation cache folder configuration parameter determines where to save the generated C or
C++ files.

Category: Simulation Target

Settings

Default: C

C
Generates C code for simulation targets.
C++

Generates C++ code for simulation targets.
Select the C++ option to:

* Generate MATLAB Function block or Stateflow chart MEX code as C++ files and compile code
using C++. For MATLAB Function and MATLAB System blocks, if you add C++ code to
buildInfo using coder.updateBuildInfo or coder.ExternalDependency, set
Language to C++.

* Simulate a MATLAB System block through code generation and compilation using C++.

* Use a C Function block to interface with C++ classes defined in your custom code. See
“Interface with C++ Classes Using C Function Block”.

A model cannot have a C++ simulation target if it contains a Simscape block with a source file that
contains MATLAB functions.

Before you build a system, configure Simulink to use a compiler system using mex -setup.

Command-Line Information
Parameter: SimTargetLang

Value: 'C' | 'C++'

Default: 'C'

Language

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

Related Examples

. “Model Configuration Parameters: Simulation Target” on page 13-2
. “Manage Simulation Targets for Referenced Models”

13-7

13 simulation Target Parameters

GPU acceleration

Description

Speed up the execution of MATLAB Function block on NVIDIA GPUs by generating CUDA® code. This
option requires a GPU Coder license.

Category: Simulation Target

Settings

Default: Off

Y| On

Enables simulation acceleration by using GPU Coder. When this option is on, the software
generates CUDA MATLAB executable (MEX) code from the block and dynamically links the
generated code to Simulink during simulation.

Off

Disables simulation acceleration by using GPU Coder. When this option is off, Simulink uses the
interpreted code mode normally used in simulations.

Command-Line Information
Parameter: GPUAcceleration

Type: character vector

Value: 'on' | 'off'

Default: 'of '

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

Related Examples
. “Model Configuration Parameters: Simulation Target” on page 13-2

13-8

Enable custom code analysis

Enable custom code analysis

Description

Specify whether or not to enable Simulink Coverage and Simulink Design Verifier support for custom
code. This option affects the C Caller block, the C Function block, the MATLAB Function block, the
MATLAB System block, and Stateflow charts.

Category: Simulation Target

Settings

Default: Off

Y1 On
Enables Simulink Coverage and Simulink Design Verifier support for custom code.

Off
Disables Simulink Coverage and Simulink Design Verifier support for custom code.

Command-Line Information
Parameter: SimAnalyzeCustomCode
Value: 'on' | 'off'

Default: 'of '

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Coverage for Custom C/C++ Code in Simulink Models” (Simulink Coverage)

13-9

13 simulation Target Parameters

Additional code

13-10

Description
Specify additional custom code to import into Simulink.

Category: Simulation Target

Settings

Default: '’

Command-Line Information
Parameter: SimCustomSourceCode
Type: character vector

Value: any C code

Default: '

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Reuse Custom Code in Stateflow Charts” (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 13-2

Include headers

Include headers

Description
Specify interface header code containing types and function declarations to import into Simulink.

Category: Simulation Target

Settings

Default: '’

Tips

* When you include a custom header file, enclose the file name in double quotes. For example,
#include "sample header.h" is a valid declaration for a custom header file.

* You can include extern declarations of variables or functions.

Command-Line Information
Parameter: SimCustomHeaderCode
Type: character vector

Value: any C code

Default: '

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Reuse Custom Code in Stateflow Charts” (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 13-2

13-11

13 simulation Target Parameters

Initialize code

Description
Specify C/C++ code to execute at the start of simulation.

Category: Simulation Target

Settings
Default: '’
Tip

» Use this code to invoke functions that allocate memory or to perform other initializations of your
custom code.

Command-Line Information
Parameter: SimCustomInitializer
Type: character vector

Value: any C code

Default: ''

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Reuse Custom Code in Stateflow Charts” (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 13-2

13-12

Terminate code

Terminate code

Description
Specify C/C++ code to execute at the end of simulation.

Category: Simulation Target

Settings
Default: '’
Tip

» Use this code to invoke functions that free memory allocated by the custom code or to perform
other cleanup tasks.

Command-Line Information
Parameter: SimCustomTerminator
Type: character vector

Value: any C code

Default: ''

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples
. “Reuse Custom Code in Stateflow Charts” (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 13-2

13-13

13 simulation Target Parameters

Include directories

13-14

Description
Specify directories containing header and source files.

Category: Simulation Target

Settings
Default: '’

Enter a space-separated list of folder paths.

* Specify absolute or relative paths to the directories.

* Relative paths must be relative to the folder containing your model files, not relative to the build
folder.

* The order in which you specify the directories is the order in which they are searched for header,
source, and library files.

Note If you specify a Windows® path containing one or more spaces, you must enclose the character
vector in double quotes. For example, the second and third paths in the Include directories entry
below must be double-quoted:

C:\Project "C:\Custom Files" "C:\Library Files"

If you set the equivalent command-line parameter SimUserIncludeDirs, each path containing
spaces must be separately double-quoted within the single-quoted third argument, for example,

>> set param('mymodel', 'SimUserIncludeDirs’, .
'C:\Project "C:\Custom Files" "C:\Library Files"')

Command-Line Information
Parameter: SimUserIncludeDirs
Type: character vector

Value: any folder path

Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Include directories

See Also

Related Examples

. “Reuse Custom Code in Stateflow Charts” (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 13-2

13-15

13 simulation Target Parameters

Source files

13-16

Description
Specify custom code source files.

Category: Simulation Target

Settings
Default: '

You can separate source files with a comma, a space, or a new line.

Limitation

This parameter does not support Windows file names that contain embedded spaces.
Tip

» The file name is sufficient if the file is in the current MATLAB folder or in one of the directories
specified in Include directories.

Command-Line Information
Parameter: SimUserSources

Type: character vector

Value: any file name

Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
. “Reuse Custom Code in Stateflow Charts” (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 13-2

Libraries

Libraries

Description

Specify a list of static libraries and/or shared libraries that contain custom object code to link into the
target.

Category: Simulation Target

Settings
Default: '

Enter a space-separated list of library files.

Limitation

This parameter does not support Windows file names that contain embedded spaces.

Tips

* The file name is sufficient if the file is in the current MATLAB folder or in one of the directories
specified in Include directories.

* Ifyou are using a shared library (DLL) file on a Windows system, the DLL file must be located in
the same drive as the build directory, which must be a local (non-network) drive.

Command-Line Information
Parameter: SimUserLibraries
Type: character vector

Value: any library file name

Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

. “Reuse Custom Code in Stateflow Charts” (Stateflow)

13-17

13 simulation Target Parameters

. “Model Configuration Parameters: Simulation Target” on page 13-2

13-18

Defines

Defines

Description
Specify preprocessor macro definitions to be added to the compiler command line.

Category: Simulation Target

Settings
Default: '’

Enter a list of macro definitions for the compiler command line. Specify the parameters with a space-
separated list of macro definitions. If a makefile is generated, these macro definitions are added to
the compiler command line in the makefile. The list can include simple definitions (for example, -
DDEF1), definitions with a value (for example, -DDEF2=1), and definitions with a space in the value
(for example, -DDEF3="my value"). Definitions can omit the -D (for example, -DF00=1 and FO0=1
are equivalent). If the toolchain uses a different flag for definitions, the code generator overrides the
-D and uses the appropriate flag for the toolchain.

Command-Line Information
Parameter: SimUserDefines

Type: character vector

Value: preprocessor macro definition
Default: '’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
. “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder)
. “Model Configuration Parameters: Simulation Target” on page 13-2

13-19

13 simulation Target Parameters

Compiler flags

13-20

Description
Specify additional flags to be added to the compiler command line.

Category: Simulation Target

Settings
Default: '’

Enter a list of additional flags for the compiler command line. Specify the flags with a space-
separated list. If a makefile is generated, these flags are added to the compiler command line in the
makefile. Acceptable flag content and syntax depend on the compiler being used.

Examples: -Zi -Wall, -03, -w

Command-Line Information
Parameter: SimCustomCompilerFlags
Type: character vector

Value: compiler flags

Default: '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
. “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder)
. “Model Configuration Parameters: Simulation Target” on page 13-2

Linker flags

Linker flags

Description
Specify additional flags to be added to the linker command line.

Category: Simulation Target

Settings
Default: '’

Enter a list of flags for the linker command line. Specify the flags with a space-separated list. If a
makefile is generated, these macro definitions are added to the linker command line in the makefile.
Acceptable flag content and syntax depend on the linker being used.

Examples: -T, -MD -Gy

Command-Line Information
Parameter: SimCustomLinkerFlags
Type: character vector

Value: linker flags

Default: '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
. “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder)
. “Model Configuration Parameters: Simulation Target” on page 13-2

13-21

13 simulation Target Parameters

Deterministic functions

13-22

Description

Specify which custom code functions are deterministic, that is, always producing the same outputs
for the same inputs. If a custom code function is specified as deterministic, then a C Caller or C
Function block that calls that function can be used in a For Each subsystem or with continuous
sample time, and the block is optimized for use in conditional input branch execution. When a block is
optimized for use in conditional input branch execution, it is executed only if it is in the active branch
of a Switch or Multiport Switch block, both in simulation and in generated code. See Conditional
input branch execution. This parameter is enabled only if Import custom code is selected.

Category: Simulation Target

Settings

Default: None

None

None of the custom code functions are deterministic.
All

All of the custom code functions are deterministic.
By function

The custom code functions that are deterministic are listed in “Specify by function” on page 13-
24,

Note If a C Function block references any custom code global variables in its code, then this
parameter must be set to A1l in order for the block to be used in a For Each subsystem or with
continuous sample time, or to be optimized for use in conditional input branch execution.

Command-Line Information

Parameter: DefaultCustomCodeDeterministicFunctions
Type: character vector

Value: 'None' | 'All"' | 'ByFunction'

Default: 'None'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Deterministic functions

See Also

Related Examples

. “Model Configuration Parameters: Simulation Target” on page 13-2
. C Caller

. C Function

. For Each Subsystem

. “Conditional input branch execution” on page 2-90

13-23

13 simulation Target Parameters

Specify by function

13-24

Description

Specify which custom code functions are deterministic, that is, always producing the same outputs
for the same inputs. This parameter is enabled only when the “Deterministic functions” on page 13-22
parameter is set to By Function. If a custom code function is specified as deterministic, then a C
Caller or C Function block that calls that function can be used in a For Each subsystem or with
continuous sample time, and the block is optimized for use in conditional input branch execution.
When a block is optimized for use in conditional input branch execution, it is executed only if it is in
the active branch of a Switch or Multiport Switch block, both in simulation and in generated code.
See Conditional input branch execution.

Category: Simulation Target

Settings

Specify the names of custom code functions that are deterministic, that is, always producing the same
outputs for the same inputs.

+ Add

Add a name to the list of custom code deterministic functions.

X Remove

Remove a name from the list of custom code deterministic functions.

Tip If you do not see a list of your custom code functions in the Specify by function dialog, close
the dialog, click Validate custom code, and click Specify by function again.

Command-Line Information

Parameter: CustomCodeDeterministicFunctions

Type: character vector

Value: names of custom code functions, separated by commas
Default: '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Specify by function

See Also

Related Examples

. “Model Configuration Parameters: Simulation Target” on page 13-2
. C Caller

. C Function

. For Each Subsystem

. “Conditional input branch execution” on page 2-90

13-25

13 simulation Target Parameters

Default function array layout

13-26

Description

Specify how input array data is handled by external C/C++ functions and class methods. This
parameter affects C/C++ functions and methods called by C Caller, C Function, MATLAB Function,
and MATLAB System blocks and Stateflow charts.

Category: Simulation Target

Settings
Default: Not specified

Column-major

External C/C++ functions and class methods assume input array data is in column-major layout.
Row-major

External C/C++ functions and class methods assume input array data is in row-major layout.
Any

External C/C++ functions and class methods are indifferent about input data array layout. If your
external function and class method algorithms do not require the matrix data to be in a specific
array layout, for example if they perform only element-wise operations on input array data, use
this option.

Not specified

External C/C++ functions and class methods make no assumption about input data array layout.
However, if Array layout (Simulink Coder) is set to Row-major, Simulink reports an error. You

can turn off the error by changing the External functions compatibility for row-major code
generation (Simulink Coder) to warning or none.

The Default function array layout parameter controls the default array layout of custom code
functions and class methods. To specify array layout for individual functions or class methods, click
Exception by function on page 13-33.

Command-Line Information

Parameter: DefaultCustomCodeFunctionArrayLayout

Type: character vector

Value: 'Column-major' | 'Row-major' | 'Any' | 'NotSpecified'
Default: 'NotSpecified'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation

Default function array layout

Application Setting
Safety precaution No recommendation
See Also

Related Examples

. “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder)
. “Model Configuration Parameters: Simulation Target” on page 13-2

. “Integrate C Code Using C Caller Blocks”

13-27

13 simulation Target Parameters

Undefined function and variable handling

13-28

Description

Specify the behavior of undefined functions and variables in the C source code file of a model that
contains Stateflow charts or C Caller, C Function, MATLAB Function, or MATLAB System blocks. If
you declare a function or variable in the header file but do not implement it in the source code,
Simulink behaves according to this setting. Depending on the setting, Simulink takes functions and
variables from the header file and creates stub functions and variables equal to zero if they are not
defined in the C source code file. If your code is not compatible with desktop simulation, or you want
to introduce the interface to external code with the relevant header files, set this parameter to Use
interface only.

Category: Simulation Target

Settings

Default: Filter out

Throw error

Return an error if a function or variable in the C source code is undefined. Simulink does not
generate stub functions or variables equal to zero, but shows the functions and variables in the
Port Specification table of the C Caller block.

Filter out

Filter out undefined functions and variables in the C source code. Simulink does not automatically
generate stub functions or variables equal to zero, and the Port Specification table of the C
Caller block does not show these functions and variables.

If you have undefined functions or variables in the C source code and a model that contains a
Stateflow chart, MATLAB Function, or MATLAB System block calls these functions or variables,
Simulink returns an error. If the custom code in the blocks in your model has undefined functions
or variables, Simulink displays a warning.

Do not detect

Do not detect undefined functions or variables in the source code. Simulink does not
automatically generate stub functions or variables equal to zero, but shows the functions and
variables in the Port Specification table of the C Caller block.

Use interface only

Detect undefined functions and variables in the C source code. Simulink generates stub functions
and variables equal to zero, makes them visible in the model, and allows you to call them from
Stateflow charts and C Function, MATLAB Function, and MATLAB System blocks.

Command-Line Information

Parameter: CustomCodeUndefinedFunction

Value: 'ThrowError' | 'FilterOut' | 'DoNotDetect' | 'UseInterfaceOnly’
Default: 'FilterQut'

Undefined function and variable handling

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder)
. “Model Configuration Parameters: Simulation Target” on page 13-2
. C Caller

13-29

13 simulation Target Parameters

Simulate custom code in a separate process

13-30

Description

Run custom code in a separate process outside of MATLAB during model simulation. This option
applies to external code integrated into the model using C Caller, C Function, MATLAB Function, and
MATLAB System blocks and Stateflow charts.

Category: Simulation Target

Settings
Default: Off

Y1 On

Custom code runs in a separate process during model simulation, thus preventing a MATLAB
crash due to unexpected exceptions in the custom code or errors in the interface between
Simulink and the custom code. A run-time exception in the custom code produces an error
message in Simulink that provides detailed information about the exception, such as which block
or line number is responsible, to help resolve any issues with the code. If a supported external
debugger is installed, the error message provides a button to launch the external debugger. For
more information, see “Debug Custom C/C++ Code”.

Selecting this parameter allows you to map a pointer type argument of a custom code C function
to an output port of a C Caller block without explicitly specifying its size in the Port
Specification table of the block. See “Map C Function Arguments to Simulink Ports”.

Ooff

Custom code runs in the same process as the rest of the model during simulation. Simulation
usually runs faster, but a run-time exception in the custom code could cause MATLAB to crash.

Command-Line Information
Parameter: SimDebugExecutionForCustomCode
Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Simulate custom code in a separate process

See Also

“Model Configuration Parameters: Simulation Target” on page 13-2 | C Caller | C Function | MATLAB
Function | MATLAB System

More About

. “Integrate C Code Using C Caller Blocks”
. “Integrate External C/C++ Code into Simulink Using C Function Blocks”

13-31

13 simulation Target Parameters

Enable global variables as function interfaces

13-32

Description

Specify the behavior of global variables in custom code called by the C Caller block. If this option is
selected, the variables declared as global in the custom code can be used as global arguments on the
block interface.

Category: Simulation Target

Settings
Default: Off

Y1 On

Enables parsing of custom code global variables on the function interface. C Caller block treats
the global variables in your custom code as global arguments on the block interface. These
arguments appear in bold on the Port Specification table.

Ooff

Disables parsing of global variables on the block interface.

Command-Line Information

Parameter: CustomCodeGlobalsAsFunctionIO
Value: 'on' | 'off'
Default: 'off"'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

“Model Configuration Parameters: Simulation Target” on page 13-2 | C Caller |
FunctionPortSpecification | getGlobalArg

More About
. “Integrate C Code Using C Caller Blocks”

Exception by function

Exception by function

Description
Specify how input array data is handled by each external C/C++ function and class method.

Category: Simulation Target

Settings

Specify how input array data is handled by each external C/C++ function and class method in your
custom code. The array layout specified for an individual function or class method takes precedence
over the option specified in Default function array layout on page 13-26. Use these options to add
or remove the array layout setting for an individual function or class method:

+ Add

Add custom C/C++ function or class method and specify its array layout setting. To specify a
class method, use the syntax ClassName::MethodName.

X Remove

Remove custom C/C++ function or class method from the exception list and apply default array
layout to the function or class method.

Tip If you do not see a list of your custom code functions in the Exception by function dialog, close
the dialog, click Validate custom code, and click Exception by function again.

Command-Line Information

Parameter: CustomCodeFunctionArraylLayout

Type: structure array

Value: structure with ' FunctionName' and 'ArraylLayout’ fields. 'ArraylLayout' can be
"Column-major', 'Row-major' or 'Any"'.

Default: ' '

Example

Consider the model foo model. If you have external C/C++ functions and class methods that you
interface with the model, execute these MATLAB commands to specify array layouts for the functions
and class methods.

arraylLayout(1l).FunctionName = 'MyCFunctionl';
arraylLayout(1l).ArrayLayout = 'Column-major';
arraylLayout(2).FunctionName = 'MyCFunction2';
arraylLayout(2).ArrayLayout = 'Row-major';
arrayLayout(3).FunctionName = 'myClass::getboolRes";
arraylLayout(3).ArrayLayout = 'Row-major';

set param('foo model', 'CustomCodeFunctionArrayLayout', arraylLayout)

13-33

13 simulation Target Parameters

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Related Examples

. “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder)
. “Model Configuration Parameters: Simulation Target” on page 13-2
. C Caller

13-34

Solver Parameters

14 Solver Parameters

Solver Pane

14-2

The Solver category includes parameters for configuring a solver for a model. A solver computes a
dynamic system's states at successive time steps over a specified time span. You also use these
parameters to specify the simulation start and stop times.

Once the model compiles, the Solver Information tooltip displays

* Compiled solver name

* Step size (Max step size or Fixed step size)
Once the model compiles, the status bar displays the solver used for compiling and a carat (*) when:

* Simulink selects a different solver during compilation.

* You set the step size to auto. The Solver Information tooltip displays the step size that Simulink
calculated.

When configuring the solver, note that:

* Simulation time is not the same as clock time. For example, running a simulation for 10 seconds
usually does not take 10 seconds. Total simulation time depends on factors such as model
complexity, solver step sizes, and computer speed.

* Fixed-step solver type is required for code generation, unless you use an S-function or RSim
target.

* Variable-step solver type can significantly shorten the time required to simulate models in
which states change rapidly or which contain discontinuities.

Parameter Description

“Start time” on page 14-6 Specify the start time for the simulation or
generated code as a double-precision value,
scaled to seconds.

“Stop time” on page 14-7 Specify the stop time for the simulation or
generated code as a double-precision value,
scaled to seconds.

“Type” on page 14-8 Select the type of solver you want to use to
simulate your model.

“Solver” on page 14-10 Select the solver you want to use to compute the
states of the model during simulation or code
generation.

“Max step size” on page 14-16 Specify the largest time step that the solver can
take.

“Integration method” on page 14-73 Specify the integration order of the odeN solver

“Initial step size” on page 14-18 Specify the size of the first time step that the
solver takes.

“Min step size” on page 14-20 Specify the smallest time step that the solver can
take.

Solver Pane

Parameter

Description

“Relative tolerance” on page 14-22

Specify the largest acceptable solver error,
relative to the size of each state during each time
step. If the relative error exceeds this tolerance,
the solver reduces the time step size.

“Absolute tolerance” on page 14-24

Specify the largest acceptable solver error, as the
value of the measured state approaches zero. If
the absolute error exceeds this tolerance, the
solver reduces the time step size.

“Shape preservation” on page 14-26

At each time step use derivative information to
improve integration accuracy.

“Maximum order” on page 14-28

Select the order of the numerical differentiation
formulas (NDFs) used in the ode15s solver.

“Solver reset method” on page 14-30

Select how the solver behaves during a reset,
such as when it detects a zero crossing.

“Number of consecutive min steps” on page 14-
32

Specify the maximum number of consecutive
minimum step size violations allowed during
simulation.

“Solver Jacobian Method” on page 14-34

Specify the method to compute the Jacobian
matrix for an implicit solver.

“Daessc mode” on page 14-36

Fine-tune the daessc solver performance.

“Treat each discrete rate as a separate task” on
page 14-42

Specify whether Simulink executes blocks with
periodic sample times individually or in groups.

“Automatically handle rate transition for data
transfer” on page 14-44

Specify whether Simulink software automatically
inserts hidden Rate Transition blocks between
blocks that have different sample rates to ensure:
the integrity of data transfers between tasks; and
optional determinism of data transfers for
periodic tasks.

“Deterministic data transfer” on page 14-46

Control whether the Rate Transition block
parameter Ensure deterministic data transfer
(maximum delay) is set for auto-inserted Rate
Transition blocks.

“Higher priority value indicates higher task
priority” on page 14-48

Specify whether the real-time system targeted by
the model assigns higher or lower priority values
to higher priority tasks when implementing
asynchronous data transfers.

“Zero-crossing control” on page 14-49

Enables zero-crossing detection during model
simulation. For most models, this speeds up
simulation by enabling the solver to take larger
time steps.

“Time tolerance” on page 14-51

Specify a tolerance factor that controls how
closely zero-crossing events must occur to be
considered consecutive.

14-3

14 Solver Parameters

14-4

Parameter

Description

“Number of consecutive zero crossings” on page
14-53

Specify the number of consecutive zero crossings
that can occur before Simulink software displays
a warning or an error.

“Algorithm” on page 14-55

Specifies the algorithm to detect zero crossings
when a variable-step solver is used.

“Signal threshold” on page 14-57

Specifies the deadband region used during the
detection of zero crossings. Signals falling within
this region are defined as having crossed through
Zero.

“Periodic sample time constraint” on page 14-59

Select constraints on the sample times defined by
this model. If the model does not satisfy the
specified constraints during simulation, Simulink
software displays an error message.

“Fixed-step size (fundamental sample time)” on
page 14-61

Specify the step size used by the selected fixed-
step solver.

“Sample time properties” on page 14-63

Specify and assign priorities to the sample times
that this model implements.

“Extrapolation order” on page 14-65

Select the extrapolation order used by the
odel4x solver to compute a model's states at the
next time step from the states at the current time
step.

“Number of Newton's iterations” on page 14-67

Specify the number of Newton's method
iterations used by the ode14x solver to compute
a model's states at the next time step from the
states at the current time step.

“Allow tasks to execute concurrently on target”
on page 14-69

Enable concurrent tasking behavior for model.

“Auto scale absolute tolerance” on page 14-71

Enable automatic absolute tolerance adaptation

“Allow multiple tasks to access inputs and
outputs” on page 14-41

Enable Branched Input Multiple Outputs in rate-
based models

“Enable zero-crossing detection for fixed-step
solver” on page 14-38

Enable zero-crossing detection with fixed step

“Maximum number of bracketing iterations” on
page 14-39

Specify maximum number of bracketing
iterations performed when locating a zero
crossing

“Maximum number of zero-crossings per step” on

page 14-40

Specify the maximum number of zero-crossings to
locate in one fixed step

These configuration parameters are in the Advanced parameters section.

Parameter

Description

“Enable decoupled continuous integration” on
page 2-112

Removes the coupling between continuous and
discrete rates.

Solver Pane

Parameter

Description

“Enable minimal zero-crossing impact
integration” on page 2-114

Minimizes the impact of zero-crossings on the
integration of continuous states.

See Also

Related Examples
. “Solver Selection Criteria”

14-5

14 Solver Parameters

Start time

14-6

Description

Specify the start time for the simulation or generated code as a double-precision value, scaled to
seconds.

Category: Solver

Settings
Default: 0.0
* A start time must be less than or equal to the stop time. For example, use a nonzero start time to

delay the start of a simulation while running an initialization script.

* The values of block parameters with initial conditions must match the initial condition settings at
the specified start time.

* Simulation time is not the same as clock time. For example, running a simulation for 10 seconds
usually does not take 10 seconds. Total simulation time depends on factors such as model
complexity, solver step sizes, and computer speed.

Programmatic Use
Parameter: StartTime

Type: character vector
Default: '0.0'

See Also

Related Examples
. “Solver Pane” on page 14-2

Stop time

Stop time

Description

Specify the stop time for the simulation or generated code as a double-precision value, scaled to
seconds.

Category: Solver

Settings

Default: 10

Stop time must be greater than or equal to the start time.
Specify inf to run a simulation or generated program until you explicitly pause or stop it.

If the stop time is the same as the start time, the simulation or generated program runs for one
step.

Simulation time is not the same as clock time. For example, running a simulation for 10 seconds
usually does not take 10 seconds. Total simulation time depends on factors such as model
complexity, solver step sizes, and computer speed.

If your model includes blocks that depend on absolute time and you are creating a design that
runs indefinitely, see “Blocks That Depend on Absolute Time”.

Programmatic Use

Parameter: StopTime
Type: character vector
Value: any valid value
Default: '10.0'

See Also

Related Examples

“Blocks That Depend on Absolute Time”
“Use Blocks to Stop or Pause a Simulation”
“Solver Pane” on page 14-2

14-7

14 Solver Parameters

Type

14-8

Description
Select the type of solver you want to use to simulate your model.

Category: Solver

Settings
Default: Variable-step

Variable-step
Step size varies from step to step, depending on model dynamics. A variable-step solver:

* Reduces step size when model states change rapidly, to maintain accuracy.
* Increases step size when model states change slowly, to avoid unnecessary steps.

Variable-step is recommended for models in which states change rapidly or that contain
discontinuities. In these cases, a variable-step solver requires fewer time steps than a fixed-step
solver to achieve a comparable level of accuracy. This can significantly shorten simulation time.

Fixed-step

Step size remains constant throughout the simulation. You require a fixed-step solver for code
generation, unless you use an S-function or RSim target. Typically, lower order solvers are
computationally less expensive than higher order solvers. However, they also provide less
accuracy.

Note The solver computes the next time as the sum of the current time and the step size.

Dependencies

Selecting Variable-step enables the following parameters:

* Solver

* Max step size

* Min step size

* Initial step size

* Relative tolerance

* Absolute tolerance

* Shape preservation

* Initial step size

* Number of consecutive min steps
* Zero-crossing control
+ Time tolerance

Type

* Algorithm
Selecting Fixed-step enables the following parameters:

* Solver

* Periodic sample time constraint

* Fixed-step size (fundamental sample time)

* Treat each discrete rate as a separate task

* Higher priority value indicates higher task priority

* Automatically handle rate transitions for data transfers

Programmatic Use

Parameter: SolverType
Value: 'Variable-step' | 'Fixed-step'
Default: 'Variable-step'

See Also

Related Examples

. “Choose a Solver”
. “Purely Discrete Systems”
. “Solver Pane” on page 14-2

14-9

14 Solver Parameters

Solver

14-10

Description

Select the solver you want to use to compute the states of the model during simulation or code
generation.

Category: Solver

Settings
Select from these types:

» “Fixed-step Solvers” on page 14-10
* “Variable-step Solvers” on page 14-11

The default setting for new models is VariableStepAuto.

Fixed-step Solvers

Default: FixedStepAuto

In general, all fixed-step solvers except for ode 14x calculate the next step as:
X(n+1) = X(n) + h dX(n)

where X is the state, h is the step size, and dX is the state derivative. dX(n) is calculated by a
particular algorithm using one or more derivative evaluations depending on the order of the method.

auto

Computes the state of the model using a fixed-step solver that auto solver selects. At the time the
model compiles, auto changes to a fixed-step solver that auto solver selects based on the model
dynamics. Click on the solver hyperlink in the lower right corner of the model to accept or change
this selection.

ode3 (Bogacki-Shampine)

Computes the state of the model at the next time step as an explicit function of the current value
of the state and the state derivatives, using the Bogacki-Shampine Formula integration technique
to compute the state derivatives.

Discrete (no continuous states)
Computes the time of the next time step by adding a fixed step size to the current time.

Use this solver for models with no states or discrete states only, using a fixed step size. Relies on
the model's blocks to update discrete states.

The accuracy and length of time of the resulting simulation depends on the size of the steps taken
by the simulation: the smaller the step size, the more accurate the results but the longer the
simulation takes.

Note The fixed-step discrete solver cannot be used to simulate models that have continuous
states.

Solver

ode8 (Dormand-Prince RK8(7))

Uses the eighth-order Dormand-Prince formula to compute the model state at the next time step
as an explicit function of the current value of the state and the state derivatives approximated at
intermediate points.

ode5 (Dormand-Prince)

Uses the fifth-order Dormand-Prince formula to compute the model state at the next time step as
an explicit function of the current value of the state and the state derivatives approximated at

intermediate points.

ode4 (Runge-Kutta)
Uses the fourth-order Runge-Kutta (RK4) formula to compute the model state at the next time
step as an explicit function of the current value of the state and the state derivatives.

ode2 (Heun)

Uses the Heun integration method to compute the model state at the next time step as an explicit
function of the current value of the state and the state derivatives.

odel (Euler)

Uses the Euler integration method to compute the model state at the next time step as an explicit
function of the current value of the state and the state derivatives. This solver requires fewer
computations than a higher order solver. However, it provides comparatively less accuracy.

odeldx (extrapolation)

Uses a combination of Newton's method and extrapolation from the current value to compute the
model's state at the next time step, as an implicit function of the state and the state derivative at
the next time step. In the following example, X is the state, dX is the state derivative, and h is the
step size:

X(n+1) - X(n)- hdX(n+1) =0

This solver requires more computation per step than an explicit solver, but is more accurate for a
given step size.

odelbe (Backward Euler)

The odelbe solver is a Backward Euler type solver that uses a fixed number of Newton iterations,
and incurs only a fixed cost. You can use the odelbe solver as a computationally inexpensive
fixed-step alternative to the odel4x solver.

Variable-step Solvers
Default: VariableStepAuto

auto

Computes the state of the model using a variable-step solver that auto solver selects. At the time
the model compiles, auto changes to a variable-step solver that auto solver selects based on the
model dynamics. Click on the solver hyperlink in the lower right corner of the model to accept or
change this selection.

ode45 (Dormand-Prince)

Computes the model's state at the next time step using an explicit Runge-Kutta (4,5) formula (the
Dormand-Prince pair) for numerical integration.

ode45 is a one-step solver, and therefore only needs the solution at the preceding time point.

14-11

14 Solver Parameters

Use ode45 as a first try for most problems.
Discrete (no continuous states)

Computes the time of the next step by adding a step size that varies depending on the rate of
change of the model's states.

Use this solver for models with no states or discrete states only, using a variable step size.

ode23 (Bogacki-Shampine)
Computes the model's state at the next time step using an explicit Runge-Kutta (2,3) formula (the
Bogacki-Shampine pair) for numerical integration.

ode23 is a one-step solver, and therefore only needs the solution at the preceding time point.

ode23 is more efficient than ode45 at crude tolerances and in the presence of mild stiffness.
odell3 (Adams)

Computes the model's state at the next time step using a variable-order Adams-Bashforth-
Moulton PECE numerical integration technique.

odell3 is a multistep solver, and thus generally needs the solutions at several preceding time
points to compute the current solution.
0odell3 can be more efficient than ode45 at stringent tolerances.

odel5s (stiff/NDF)

Computes the model's state at the next time step using variable-order numerical differentiation
formulas (NDFs). These are related to, but more efficient than the backward differentiation
formulas (BDFs), also known as Gear's method.

odel5s is a multistep solver, and thus generally needs the solutions at several preceding time
points to compute the current solution.

odel5s is efficient for stiff problems. Try this solver if ode45 fails or is inefficient.

ode23s (stiff/Mod. Rosenbrock)
Computes the model's state at the next time step using a modified Rosenbrock formula of order 2.
ode23s is a one-step solver, and therefore only needs the solution at the preceding time point.
ode23s is more efficient than odel5s at crude tolerances, and can solve stiff problems for which
odel5s is ineffective.

ode23t (Mod. stiff/Trapezoidal)
Computes the model's state at the next time step using an implementation of the trapezoidal rule
with a “free” interpolant.
ode23t is a one-step solver, and therefore only needs the solution at the preceding time point.
Use ode23t if the problem is only moderately stiff and you need a solution with no numerical
damping.

ode23tb (stiff/TR-BDF2)

Computes the model's state at the next time step using a multistep implementation of TR-BDF2,
an implicit Runge-Kutta formula with a trapezoidal rule first stage, and a second stage consisting
of a backward differentiation formula of order two. By construction, the same iteration matrix is
used in evaluating both stages.

14-12

Solver

ode23tb is more efficient than odel5s at crude tolerances, and can solve stiff problems for
which odel5s is ineffective.

odeN (Nonadaptive)

Uses an N order fixed step integration formula to compute the model state as an explicit
function of the current value of the state and the state derivatives approximated at intermediate
points.

While the solver itself is a fixed step solver, Simulink will reduce the step size at zero crossings
for accuracy.
daessc (Solver for Simscape)

Computes the model's state at the next time step by solving systems of differential-algebraic
equations resulting from Simscape models. daessc provides robust algorithms specifically
designed to simulate differential-algebraic equations arising from modeling physical systems.

daessc is only available with Simscape products.

Tips
» Identifying the optimal solver for a model requires experimentation. For an in-depth discussion,
see “Solver Selection Criteria”.

» With fast restart, you do not need to recompile the model if you change the solver. You can pick
appropriate solvers during runtime without having to go through an expensive recompilation
process.

* The optimal solver balances acceptable accuracy with the shortest simulation time.

* Simulink software uses a discrete solver for a model with no states or discrete states only, even if
you specify a continuous solver.

» A smaller step size increases accuracy, but also increases simulation time.
* The degree of computational complexity increases for oden, as n increases.
* As computational complexity increases, the accuracy of the results also increases.

Dependencies

Selecting the odel (Euler), ode2 (Huen), ode 3 (Bogacki-Shampine), ode4 (Runge-
Kutta), ode 5 (Dormand-Prince), ode 8 (Dormand Prince RK8(7)) orDiscrete (no
continuous states) fixed-step solvers enables the following parameters:

» Fixed-step size (fundamental sample time)

* Periodic sample time constraint

* Treat each discrete rate as a separate task

* Automatically handle rate transition for data transfers

* Higher priority value indicates higher task priority

Selecting odeN (Nonadaptive) variable-step solver enables the following parameters:

* Max step size
* Integration method

Selecting odel4x (extrapolation) enables the following parameters:

14-13

14 Solver Parameters

+ Fixed-step size (fundamental sample time)

* Extrapolation order

* Number of Newton's iterations

* Periodic sample time constraint

* Treat each discrete rate as a separate task

* Automatically handle rate transition for data transfers
* Higher priority value indicates higher task priority

Selecting odelbe (Backward Euler) enables the following parameters:

» Fixed-step size (fundamental sample time)

* Number of Newton's iterations

* Periodic sample time constraint

* Treat each discrete rate as a separate task

* Automatically handle rate transition for data transfers
* Higher priority value indicates higher task priority

Selecting the Discrete (no continuous states) variable-step solver enables the following
parameters:

* Max step size

* Automatically handle rate transition for data transfers
* Higher priority value indicates higher task priority

* Zero-crossing control

+ Time tolerance

* Number of consecutive zero crossings

* Algorithm

Selecting ode45 (Dormand-Prince), ode23 (Bogacki-Shampine), odell3 (Adams), or
ode23s (stiff/Mod. Rosenbrock) enables the following parameters:

* Max step size

* Min step size

* Initial step size

* Relative tolerance

* Absolute tolerance

* Shape preservation

* Number of consecutive min steps

* Automatically handle rate transition for data transfers
* Higher priority value indicates higher task priority
* Zero-crossing control

* Time tolerance

* Number of consecutive zero crossings

14-14

Solver

Selecting odel5s (stiff/NDF), ode23t (Mod. stiff/Trapezoidal), or ode23thb

Algorithm

(stiff/TR-BDF2) enables the following parameters:

Max step size

Min step size

Initial step size

Solver reset method

Number of consecutive min steps

Relative tolerance

Absolute tolerance

Shape preservation

Maximum order

Automatically handle rate transition for data transfers
Higher priority value indicates higher task priority
Zero-crossing control

Time tolerance

Number of consecutive zero crossings

Algorithm

Command-Line Information
Parameter: SolverName or Solver
Value: 'VariableStepAuto' | 'VariableStepDiscrete’

'odell3' | 'odel5s' | 'ode23s' | 'ode23t' | 'ode23tb'
'FixedStepAuto' | 'FixedStepDiscrete' |'ode8'| 'ode5'

‘ode2' | 'odel' | 'odeldx'
Default: 'VariableStepAuto

See Also

Related Examples

“Compare Solvers”

“Solver Selection Criteria”

“Purely Discrete Systems”

“Solver Pane” on page 14-2

14-15

14 Solver Parameters

Max step size

14-16

Description
Specify the largest time step that the solver can take.

Category: Solver

Settings
Default: auto

» For the discrete solver, the default value (auto) is the model's shortest sample time.

» For continuous solvers, the default value (auto) is determined from the start and stop times. If the

stop time equals the start time or is inf, Simulink chooses 0.2 seconds as the maximum step
size. Otherwise, it sets the maximum step size to

h _ tstop = tstart
max = — 50

» For Sine and Signal Generator source blocks, Simulink calculates the max step size using this
heuristic:

hmax = min

tstop — tstart (1)(1)
"\3

50 3\ Freqmax

where Freqnax is the maximum frequency (Hz) of these blocks in the model.

Tips

* Generally, the default maximum step size is sufficient. If you are concerned about the solver
missing significant behavior, change the parameter to prevent the solver from taking too large a
step.

* Max step size determines the step size of the variable-step solver.

» If the time span of the simulation is very long, the default step size might be too large for the
solver to find the solution.

» If your model contains periodic or nearly periodic behavior and you know the period, set the
maximum step size to some fraction (such as 1/4) of that period.

* In general, for more output points, change the refine factor, not the maximum step size.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Programmatic Use
Parameter: MaxStep
Type: character vector
Value: any valid value

Max step size

Default: 'auto’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Purely Discrete Systems”
. “Solver Pane” on page 14-2

14-17

14 Solver Parameters

Initial step size

Description
Specify the size of the first time step that the solver takes.

Category: Solver

Settings
Default: auto

By default, the solver selects an initial step size by examining the derivatives of the states at the start
time.

Tips
* Be careful when increasing the initial step size. If the first step size is too large, the solver might
step over important behavior.

» The initial step size parameter is a suggested first step size. The solver tries this step size but
reduces it if error criteria are not satisfied.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Programmatic Use
Parameter: InitialStep
Type: character vector
Value: any valid value
Default: 'auto’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Purely Discrete Systems”

14-18

Initial step size

“Improve Simulation Performance Using Performance Advisor”
“Solver Pane” on page 14-2

14-19

14 Solver Parameters

Min step size

14-20

Description

Specify the smallest time step that the solver can take.

Category: Solver

Settings
Default: auto

* The default value (auto) sets an unlimited number of warnings and a minimum step size on the
order of machine precision.

* You can specify either a real number greater than zero, or a two-element vector for which the first

element is the minimum step size and the second element is the maximum number of minimum
step size warnings before an error was issued.

Tips

« If the solver takes a smaller step to meet error tolerances, it issues a warning indicating the
current effective relative tolerance.

» Setting the second element to zero results in an error the first time the solver must take a step
smaller than the specified minimum. This is equivalent to changing the Min step size violation
diagnostic to error on the Diagnostics pane (see “Min step size violation” on page 9-11).

+ Setting the second element to -1 results in an unlimited number of warnings. This is also the
default if the input is a scalar.

* Min step size determines the step size of the variable step ODE solver. The size is limited by the
smallest discrete sample time in the model.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Programmatic Use
Parameter: MinStep
Type: character vector
Value: any valid value
Default: 'auto’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Min step size

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Purely Discrete Systems”
. “Min step size violation” on page 9-11
. “Solver Pane” on page 14-2

14-21

14 Solver Parameters

Relative tolerance

14-22

Description

Specify the largest acceptable solver error, relative to the size of each state during each time step. If
the relative error exceeds this tolerance, the solver reduces the time step size.

Category: Solver

Settings

Default: 1e-3

Setting the relative tolerance to auto is actually the default value of 1e-3.
The relative tolerance is a percentage of the state's value.
The default value (1e-3) means that the computed state is accurate to within 0.1%.

Tips

The acceptable error at each time step is a function of both the Relative tolerance and the
Absolute tolerance. For more information about how these settings work together, see “Error
Tolerances for Variable-Step Solvers”.

During each time step, the solver computes the state values at the end of the step and also
determines the local error - the estimated error of these state values. If the error is greater than
the acceptable error for any state, the solver reduces the step size and tries again.

The default relative tolerance value is sufficient for most applications. Decreasing the relative
tolerance value can slow down the simulation.

To check the accuracy of a simulation after you run it, you can reduce the relative tolerance to
le-4 and run it again. If the results of the two simulations are not significantly different, you can
feel confident that the solution has converged.

Dependencies

This parameter is enabled only if you set:

Solver Type to Variable-step.
Solver to a continuous variable-step solver.

This parameter works along with Absolute tolerance to determine the acceptable error at each time
step. For more information about how these settings work together, see “Error Tolerances for
Variable-Step Solvers”.

Programmatic Use
Parameter: RelTol
Type: character vector
Value: any valid value
Default: 'le-3'

Relative tolerance

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

Related Examples

. “Error Tolerances for Variable-Step Solvers”

. “Improve Simulation Performance Using Performance Advisor”

. “Solver Pane” on page 14-2

14-23

14 Solver Parameters

Absolute tolerance

14-24

Description

Specify the largest acceptable solver error, as the value of the measured state approaches zero. If the
absolute error exceeds this tolerance, the solver reduces the time step size.

Category: Solver

Settings

Default: auto

The default value (auto) initially sets the absolute tolerance for each state based on the relative
tolerance alone. If the relative tolerance is larger than 1e-3, then the initial absolute tolerance is
set to 1e-6. However, for relative tolerances smaller than le-3, the absolute tolerance for the state
is initialized to reltol * 1le-3. As the simulation progresses, the absolute tolerance for each
state is reset to the maximum value that the state has reached until that point, times the relative
tolerance for that state.

For example, if a state goes from 0 to 1 and the Relative tolerance is 1e-4, then the Absolute
tolerance is initialized at 1e-7 and by the end of the simulation, the Absolute tolerance reaches
le-4.

If, on the other hand, the Relative tolerance is set to 1e-3, the Absolute tolerance is set to 1e-6
and by the end of the simulation, reaches 1e-3.
If the computed setting is not suitable, you can determine an appropriate setting yourself.

If you do set your own value for Absolute tolerance, you can also select whether it adapts based
on the value of the states by toggling the AutoScaleAbsTol parameter. For more information,
see “Auto scale absolute tolerance” on page 14-71.

Tips

The acceptable error at each time step is a function of both the Relative tolerance and the
Absolute tolerance. For more information about how these settings work together, see “Error
Tolerances for Variable-Step Solvers”.

The Integrator, Second-Order Integrator, Variable Transport Delay, Transfer Fcn, State-Space, and
Zero-Pole blocks allow you to specify absolute tolerance values for solving the model states that
they compute or that determine their output. The absolute tolerance values that you specify in
these blocks override the global setting in the Configuration Parameters dialog box.

You might want to override the Absolute tolerance setting using blocks if the global setting does
not provide sufficient error control for all your model states, for example, if they vary widely in
magnitude.

If you set the Absolute tolerance too low, the solver might take too many steps around near-zero
state values, and thus slow the simulation.

To check the accuracy of a simulation after you run it, you can reduce the absolute tolerance and
run it again. If the results of the two simulations are not significantly different, you can feel
confident that the solution has converged.

Absolute tolerance

» If your simulation results do not seem accurate, and your model has states whose values approach
zero, the Absolute tolerance may be too large. Reduce the Absolute tolerance to force the
simulation to take more steps around areas of near-zero state values.

Dependencies

This parameter is enabled only if you set:

* Solver Type to Variable-step.
* Solver to a continuous variable-step solver.

This parameter works along with Relative tolerance to determine the acceptable error at each time
step. For more information about how these settings work together, see “Error Tolerances for
Variable-Step Solvers”.

Programmatic Use
Parameter: AbsTol

Type: character vector | numeric value
Value: 'auto' | positive real scalar
Default: 'auto’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Error Tolerances for Variable-Step Solvers”
. “Improve Simulation Performance Using Performance Advisor”
. “Solver Pane” on page 14-2

14-25

14 Solver Parameters

Shape preservation

14-26

Description
At each time step use derivative information to improve integration accuracy.

Category: Solver

Settings
Default: Disable all

Disable all

Do not perform Shape preservation on any signals.
Enable all

Perform Shape preservation on all signals.

Tips

* The default setting (Disable all) usually provides good accuracy for most models.

» Setting to Enable all will increase accuracy in those models having signals whose derivative
exhibits a high rate of change, but simulation time may be increased.

Dependencies

This parameter is enabled only if you use a continuous-step solver.

Programmatic Use
Parameter: ShapePreserveControl
Value: 'EnableAll | 'DisableAll
Default: 'DisableAll

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Zero-Crossing Detection”

Shape preservation

“Solver Pane” on page 14-2

14-27

14 Solver Parameters

Maximum order

Description
Select the order of the numerical differentiation formulas (NDFs) used in the odel5s solver.

Category: Solver

Settings
Default: 5
5

Specifies that the solver uses fifth order NDFs.
1

Specifies that the solver uses first order NDFs.
2

Specifies that the solver uses second order NDFs.
3

Specifies that the solver uses third order NDFs.
4

Specifies that the solver uses fourth order NDFs.
Tips

* Although the higher order formulas are more accurate, they are less stable.

» If your model is stiff and requires more stability, reduce the maximum order to 2 (the highest
order for which the NDF formula is A-stable).

* As an alternative, you can try using the ode23s solver, which is a lower order (and A-stable)
solver.

Dependencies

This parameter is enabled only if Selver is set to odel5s.

Programmatic Use
Parameter: MaxOrder
Type: integer

Value: 1|2|3|4]|5
Default: 5

14-28

Maximum order

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

Related Examples

. “Error Tolerances for Variable-Step Solvers”

. “Improve Simulation Performance Using Performance Advisor”

. “Solver Pane” on page 14-2

14-29

14 Solver Parameters

Solver reset method

14-30

Description

Select how the solver behaves during a reset, such as when it detects a zero crossing.

Category: Solver

Settings
Default: Fast

Fast
Specifies that the solver will not recompute the Jacobian matrix at a solver reset.
Robust

Specifies that the solver will recompute the Jacobian matrix needed by the integration step at
every solver reset.

Tips
* Selecting Fast speeds up the simulation. However, it can result in incorrect solutions in some
cases.

» Ifyou suspect that the simulation is giving incorrect results, try the Robust setting. If there is no
difference in simulation results between the fast and robust settings, revert to the fast setting.

Dependencies

This parameter is enabled only if you select one of the following solvers:

* odel5s (Stiff/NDF)
* o0de23t (Mod. Stiff/Trapezoidal)
* ode23tb (Stiff/TR-BDF2)

Programmatic Use
Parameter: SolverResetMethod
Value: 'Fast' | 'Robust’
Default: 'Fast'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Solver reset method

See Also

Related Examples
. “Choose a Solver”
. “Solver Pane” on page 14-2

14-31

14 Solver Parameters

Number of consecutive min steps

14-32

Description

Specify the maximum number of consecutive minimum step size violations allowed during simulation.

Category: Solver

Settings
Default: 1
* A minimum step size violation occurs when a variable-step continuous solver takes a smaller step

than that specified by the Min step size property (see “Min step size” on page 14-20).

* Simulink software counts the number of consecutive violations that it detects. If the count exceeds
the value of Number of consecutive min steps, Simulink software displays either a warning or
error message as specified by the Min step size violation diagnostic (see “Min step size
violation” on page 9-11).

Dependencies

This parameter is enabled only if you set:

* Solver Type to Variable-step.
* Solver to a continuous variable step solver.

Programmatic Use

Parameter: MaxConsecutiveMinStep
Type: character vector

Value: any valid value

Default: '1'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Choose a Solver”

Number of consecutive min steps

“Min step size violation” on page 9-11
“Min step size” on page 14-20
“Solver Pane” on page 14-2

14-33

14 Solver Parameters

Solver Jacobian Method

Description

Category: Solver

Settings

Default: auto

auto

Sparse perturbation
Full perturbation
Sparse analytical

Full analytical

Tips
* The default setting (auto) usually provides good accuracy for most models.

Dependencies

This parameter is enabled only if an implicit solver is used.

Programmatic Use

Parameter: SolverJacobianMethodControl

Value: 'auto’ | 'SparsePerturbation'|'FullPerturbation' | 'SparseAnalytical’
|'FullAnalytical'

Default: 'auto’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Choose a Solver”

14-34

Solver Jacobian Method

“Solver Pane” on page 14-2

14-35

14 Solver Parameters

Daessc mode

14-36

Description

Category: Solver

Settings
Default: auto

auto

Automatically selects the optimal daessc solver mode.
Fast

The most efficient mode in terms of computation cost, but less robust.
Balanced

Provides a balance between computational costs and robustness.
Robust

More robust, but also more costly than Fast or Balanced.
Quick debug

Updates the solver Jacobian at every integration step, and is therefore even more costly than
Robust. Recommended only for interactive model development, to quickly find issues with
equations.

Full debug

Updates the solver Jacobian at every integration step and every Newton iteration. This mode is
the most expensive in terms of computational cost. Recommended only for interactive model
development, to thoroughly check equations and find possible issues.

Tips

* The default setting (auto) usually provides a good balance between speed and robustness for
most models.

* Robust mode tends to have a higher computational cost.

» Debug modes are the most expensive and they are recommended only for interactive model
development.

Dependencies

This parameter is enabled only if the daessc (DAE solver for Simscape) solver is used.

Programmatic Use

Parameter: DaesscMode

Value: 'auto' | 'Fast' | 'Balanced' | 'Robust' | 'QuickDebug' | 'FullDebug'
Default: 'auto’

Daessc mode

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

. “Choose a Solver”
. “Solver Pane” on page 14-2

Setting

No impact
No impact
No impact
No impact

14-37

14 Solver Parameters

Enable zero-crossing detection for fixed-step solver

14-38

Description
Specify whether to enable zero-crossing detection when using a fixed-step solver.

Category: Solver

Settings
Default: Off
V' on
Enables zero-crossing detection for fixed-step simulation.

I off

Disables zero-crossing detection for fixed-step simulation.

Dependencies

To enable this parameter, set the solver Type to Fixed-step and set Solver to any value except
discrete (no continuous states).

Enabling Enable zero-crossing detection for fixed-step solver enables these parameters:

* Zero-crossing control
* Maximum number of bracketing iterations
¢ Maximum number of zero-crossings per step

Programmatic Use

Parameter: EnableFixedStepZeroCrossing
Value: 'on' | 'off'

Default: 'off'

See Also

Related Examples

. “Zero-Crossing Detection”

. “Zero-Crossing Detection with Fixed-Step Simulation”

. “Zero-Crossing Algorithms”

. “Use Fixed-Step Zero-Crossing Detection for Faster Simulations”

Maximum number of bracketing iterations

Maximum number of bracketing iterations

Description

Specify the number of iterations for the root-finding algorithm to perform when trying to locate each
Zero crossing.

Category: Solver

Settings
Default: 10

More iterations produce a more accurate solution but are more computationally intensive.

Dependencies

To enable this parameter:

* Set solver Type to Fixed-step.
* Set Solver to any value except discrete (no continuous states).
» Select Enable zero-crossing detection for fixed-step solver.

Programmatic Use

Parameter: MaxZcBracketingIterations
Type: integer

Value: real positive whole number

Default: 10

See Also

Related Examples

. “Zero-Crossing Detection”

. “Zero-Crossing Detection with Fixed-Step Simulation”

. “Zero-Crossing Algorithms”

. “Use Fixed-Step Zero-Crossing Detection for Faster Simulations”

14-39

14 Solver Parameters

Maximum number of zero-crossings per step

Description
Specify the maximum number of zero crossings to try to locate in each step

Category: Solver

Settings
Default: 2

Detecting more zero crossings produces a more accurate solution but is more computationally
intensive.

Dependencies

To enable this parameter:

* Set the solver Type to Fixed-step.
* Set Solver to any value except discrete (no continuous states).
» Select Enable zero-crossing detection for fixed-step solver.

Programmatic Use
Parameter: MaxZcPerStep
Type: integer

Value: real positive whole number
Default: 1

See Also

Related Examples

. “Zero-Crossing Detection”

. “Zero-Crossing Detection with Fixed-Step Simulation”

. “Zero-Crossing Algorithms”

. “Use Fixed-Step Zero-Crossing Detection for Faster Simulations”

14-40

Allow multiple tasks to access inputs and outputs

Allow multiple tasks to access inputs and outputs

Description

Enable multi-tasked branched root inputs and merged root outputs.

Category: Solver

Settings
Default: Off

IFOn

Specifies that multiple tasks can access the inputs and outputs of a model block or a root Inport
block by assigning them a union sample time of those tasks. Union sample time implies that the
input or output is accessed in all the component sample times.

I off

Specifies that greatest common denominator sample time with an implicit task is used when
multiple tasks access inputs and outputs a model block, or a root Inport block.

Command-Line Information
Parameter: AllowMultiTaskInputOutput
Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On

Safety precaution No recommendation
See Also

Rate Transition

Related Examples

. “Solver Pane” on page 14-2

14-41

14 Solver Parameters

Treat each discrete rate as a separate task

14-42

Description
Specify whether Simulink executes blocks with periodic sample times individually or in groups.

Category: Solver

Settings
Default: Off

|7On

Selects multitasking execution for models operating at different sample rates. Specifies that
groups of blocks with the same execution priority are processed through each stage of simulation
(for example, calculating output and updating discrete states) based on task priority. The
multitasking mode helps to create valid models of real-world multitasking systems, where
sections of your model represent concurrent tasks.

I off
Specifies that all blocks are processed through each stage of simulation together (for example,
calculating output and updating discrete states). Use single-tasking execution if:
* Your model contains one sample time.

* Your model contains a continuous and a discrete sample time, and the fixed-step size is equal
to the discrete sample time.

Tips

* A multirate model with multitasking mode enabled cannot reference another multirate model that
has the single-tasking mode enabled.

* The Single task data transfer and Multitask data transfer parameters on the Diagnostics >
Sample Time pane allow you to adjust error checking for sample rate transitions between blocks
that operate at different sample rates.

Dependency

» This parameter is enabled by selecting the Fixed-step solver type.

* Use local solver when referencing model must be disabled for this parameter to be
enabled.

Command-Line Information
Parameter: EnableMultiTasking
Value: 'on' | 'off'

Default: 'off'

Treat each discrete rate as a separate task

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact for simulation or during development
Off for production code generation

Efficiency No impact

Safety precaution No recommendation

See Also

Rate Transition

Related Examples

“Time-Based Scheduling” (Simulink Coder)

“Model Execution and Rate Transitions” (Simulink Coder)
“Handle Rate Transitions” (Simulink Coder)

“Solver Pane” on page 14-2

“Use local solver when referencing model” on page 12-25

14-43

14 Solver Parameters

Automatically handle rate transition for data transfer

Description

Specify whether Simulink software automatically inserts hidden Rate Transition blocks between
blocks that have different sample rates to ensure: the integrity of data transfers between tasks; and
optional determinism of data transfers for periodic tasks.

Category: Solver

Settings
Default: Off

|7On

Inserts hidden Rate Transition blocks between blocks when rate transitions are detected. Handles
rate transitions for asynchronous and periodic tasks. Simulink software adds the hidden blocks
configured to ensure data integrity for data transfers. Selecting this option also enables the
parameter Deterministic data transfer, which allows you to control the level of data transfer
determinism for periodic tasks.

I off

Does not insert hidden Rate Transition blocks when rate transitions are detected. If Simulink
software detects invalid transitions, you must adjust the model such that the sample rates for the
blocks in question match or manually add a Rate Transition block.

See “Rate Transition Block Options” (Simulink Coder) for further details.

Tips

* Selecting this parameter allows you to handle rate transition issues automatically. This saves you
from having to manually insert Rate Transition blocks to avoid invalid rate transitions, including
invalid asynchronous-to-periodic and asynchronous-to-asynchronous rate transitions, in multirate
models.

* For asynchronous tasks, Simulink software configures the inserted blocks to ensure data integrity
but not determinism during data transfers.

Programmatic Use

Parameter: AutoInsertRateTranBlk
Value: 'on' | 'off'

Default: 'off"'

Recommended Settings

Application Setting
Debugging No impact

14-44

Automatically handle rate transition for data transfer

Application Setting

Traceability No impact for simulation or during development
Off for production code generation

Efficiency No impact

Safety precaution No recommendation

See Also

Related Examples
. “Rate Transition Block Options” (Simulink Coder)
. “Solver Pane” on page 14-2

14-45

14 Solver Parameters

Deterministic data transfer

14-46

Description

Control whether the Rate Transition block parameter Ensure deterministic data transfer
(maximum delay) is set for auto-inserted Rate Transition blocks

Default: Whenever possible

Always

Specifies that the block parameter Ensure deterministic data transfer (maximum delay) is
always set for auto-inserted Rate Transition blocks.

If Always is selected and if a model needs to auto-insert a Rate Transition block to handle a rate
transition that is not between two periodic sample times related by an integer multiple, Simulink
errors out.

Whenever possible

Specifies that the block parameter Ensure deterministic data transfer (maximum delay) is
set for auto-inserted Rate Transition blocks whenever possible. If an auto-inserted Rate
Transition block handles data transfer between two periodic sample times that are related by an
integer multiple, Ensure deterministic data transfer (maximum delay) is set; otherwise, it is
cleared.

Never (minimum delay)

Specifies that the block parameter Ensure deterministic data transfer (maximum delay) is
never set for auto-inserted Rate Transition blocks.

Note Clearing the Rate Transition block parameter Ensure deterministic data transfer
(maximum delay) can provide reduced latency for models that do not require determinism. See the
description of Ensure deterministic data transfer (maximum delay) on the Rate Transition block
reference page for more information.

Category: Solver

Dependencies

This parameter is enabled only if Automatically handle rate transition for data transfer is
checked.

Programmatic Use

Parameter: InsertRTBMode

Value: 'Always' | 'Whenever possible'| 'Never (minimum delay)'
Default: 'Whenever possible’

Deterministic data transfer

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting

No impact

No impact

No impact

No recommendation

. “Rate Transition Block Options” (Simulink Coder)

. “Solver Pane” on page 14-2

14-47

14 Solver Parameters

Higher priority value indicates higher task priority

Description

Specify whether the real-time system targeted by the model assigns higher or lower priority values to
higher priority tasks when implementing asynchronous data transfers

Category: Solver

Settings
Default: Off

IFOn

Real-time system assigns higher priority values to higher priority tasks, for example, 8 has a
higher task priority than 4. Rate Transition blocks treat asynchronous transitions between rates
with lower priority values and rates with higher priority values as low-to-high rate transitions.

I off

Real-time system assigns lower priority values to higher priority tasks, for example, 4 has a
higher task priority than 8. Rate Transition blocks treat asynchronous transitions between rates
with lower priority values and rates with higher priority values as high-to-low rate transitions.

Programmatic Use

Parameter: PositivePriorityOrder
Value: 'on' | 'off'

Default: 'of '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Rate Transitions and Asynchronous Blocks” (Simulink Coder)
. “Solver Pane” on page 14-2

14-48

Zero-crossing control

Zero-crossing control

Description

Enables zero-crossing detection during model simulation. For most models, zero-crossing detection
speeds up simulation by enabling the solver to take larger time steps.

Category: Solver

Settings
Default: Use local settings

Use local settings
Zero-crossing detection is enabled on a block-by-block basis. For a list of applicable blocks, see
“Simulation Phases in Dynamic Systems”
To enable zero-crossing detection for a block, open the Block Parameters dialog box and select
Enable zero-crossing detection.

Enable all
Enables zero-crossing detection for all blocks in the model.

Disable all
Disables zero-crossing detection for all blocks in the model.

Tips
» For most models, enabling zero-crossing detection speeds up simulation by allowing the solver to
take larger time steps.

» If a model has extreme dynamic changes, disabling zero-crossing detection can speed up the
simulation but can also decrease the accuracy of simulation results. See “Zero-Crossing
Detection” for more information.

» Selecting Enable all or Disable all overrides the zero-crossing detection setting for
individual blocks.

Dependencies
Variable-Step Solver
This parameter is always enabled when the solver Type is Variable-step.

When you use a variable-step solver, setting Zero-crossing control to either Use local settings
or Enable all enables these parameters:

* Time tolerance
* Number of consecutive zero crossings
* Algorithm

14-49

14 Solver Parameters

Fixed-Step Solver

To enable this parameter when the solver Type is Fixed-step, select Enable zero-crossing
detection for fixed-step solver.

Programmatic Use

Parameter: ZeroCrossControl

Value: 'UselLocalSettings' | 'EnableAll"' | 'DisableAll’
Default: 'UselLocalSettings'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Zero-Crossing Detection”

. “Number of consecutive zero crossings” on page 14-53
. “Consecutive zero-crossings violation” on page 9-13

. “Time tolerance” on page 14-51

. “Solver Pane” on page 14-2

14-50

Time tolerance

Time tolerance

Description

Specify a tolerance factor that controls how closely zero-crossing events must occur to be considered
consecutive.

Category: Solver

Settings

Default: 10*128*eps

* Simulink software defines zero crossings as consecutive if the time between events is less than a
particular interval. The following figure depicts a simulation timeline during which Simulink
software detects zero crossings ZC; and ZC,, bracketed at successive time steps t; and t,.

: at |
—

zZc, zZc,

| ol | | ol | .

L'J L'J "
L |2

Simulink software determines that the zero crossings are consecutive if
dt < RelTolzC * t,

where dt is the time between zero crossings and RelTol1ZC is the Time tolerance.

» Simulink software counts the number of consecutive zero crossings that it detects. If the count
exceeds the value of Number of consecutive zero crossings allowed, Simulink software
displays either a warning or error as specified by the Consecutive zero-crossings violation
diagnostic (see “Consecutive zero-crossings violation” on page 9-13).

Tips

« Simulink software resets the counter each time it detects nonconsecutive zero crossings
(successive zero crossings that fail to meet the relative tolerance setting); therefore, decreasing
the relative tolerance value may afford your model's behavior more time to recover.

+ If your model experiences excessive zero crossings, you can also increase the Number of
consecutive zero crossings to increase the threshold at which Simulink software triggers the
Consecutive zero-crossings violation diagnostic.

Dependencies

To enable this parameter, set the solver Type to Variable-step and set Zero-crossing control to
either Use local settings or Enable all.

14-51

14 Solver Parameters

14-52

Programmatic Use

Parameter: ConsecutiveZCsStepRelTol
Type: character vector

Value: any valid value

Default: '10*¥128*eps''

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Zero-Crossing Detection”

“Number of consecutive zero crossings” on page 14-53
“Zero-crossing control” on page 14-49

“Consecutive zero-crossings violation” on page 9-13
“Solver Pane” on page 14-2

Number of consecutive zero crossings

Number of consecutive zero crossings

Description

Specify the number of consecutive zero crossings that can occur before Simulink software displays a
warning or an error.

Category: Solver

Settings

Default: 1000

Simulink software counts the number of consecutive zero crossings that it detects. If the count
exceeds the specified value, Simulink software displays either a warning or an error as specified
by the Consecutive zero-crossings violation diagnostic (see “Consecutive zero-crossings
violation” on page 9-13).

Simulink software defines zero crossings as consecutive if the time between events is less than a
particular interval (see “Time tolerance” on page 14-51).

Tips

If your model experiences excessive zero crossings, you can increase this parameter to increase
the threshold at which Simulink software triggers the Consecutive zero-crossings violation
diagnostic. This may afford your model's behavior more time to recover.

Simulink software resets the counter each time it detects nonconsecutive zero crossings;
therefore, decreasing the relative tolerance value may also afford your model's behavior more
time to recover.

Dependencies

To enable this parameter, set the solver Type to Variable-step and set Zero-crossing control to
either Use local settings or Enable all.

Programmatic Use
Parameter: MaxConsecutiveZCs
Type: character vector

Value: any valid value

Default: '1000'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

14-53

14 Solver Parameters

14-54

Application Setting
Safety precaution No impact
See Also

Related Examples

“Zero-Crossing Detection”

“Zero-crossing control” on page 14-49

“Consecutive zero-crossings violation” on page 9-13
“Time tolerance” on page 14-51

“Solver Pane” on page 14-2

Algorithm

Algorithm

Description

Specifies the algorithm to detect zero crossings when a variable-step solver is used.

Category: Solver

Settings

Default: Nonadaptive

Adaptive

Use an improved zero-crossing algorithm which dynamically activates and deactivates zero-
crossing bracketing. With this algorithm you can set a zero-crossing tolerance. See “Signal
threshold” on page 14-57 to learn how to set the zero-crossing tolerance.

Nonadaptive

Use the nonadaptive zero-crossing algorithm present in the Simulink software prior to Version 7.0
(R2008a). This option detects zero-crossings accurately, but might cause longer simulation run
times for systems with strong “chattering” or Zeno behavior.

Tips
» The adaptive zero-crossing algorithm is especially useful in systems having strong “chattering”, or

Zeno behavior. In such systems, this algorithm yields shorter simulation run times compared to
the nonadaptive algorithm. See “Zero-Crossing Detection” for more information.

Dependencies

To enable this parameter, set the solver Type to Variable-step and set Zero-crossing control to
either Use local settings or Enable all.

Selecting the Adaptive algorithm enables the Signal threshold parameter.
Programmatic Use
Parameter: ZeroCrossAlgorithm

Value: 'Nonadaptive' | 'Adaptive’
Default: 'Nonadaptive'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

14-55

14 Solver Parameters

14-56

Application Setting
Safety precaution No impact
See Also

Related Examples

“Zero-Crossing Detection”

“Zero-crossing control” on page 14-49

“Consecutive zero-crossings violation” on page 9-13
“Time tolerance” on page 14-51

“Number of consecutive zero crossings” on page 14-53
“Solver Pane” on page 14-2

Signal threshold

Signal threshold

Description

Specifies the deadband region used during the detection of zero crossings. Signals falling within this
region are defined as having crossed through zero.

The signal threshold is a real number, greater than or equal to zero.

Category: Solver

Settings
Default: auto
* By default, the zero-crossing signal threshold is determined automatically by the adaptive

algorithm.

* You can also specify a value for the signal threshold. The value must be a real number equal to or
greater than zero.

Tips
» Entering too small of a value for the Signal Threshold parameter will result in long simulation
run times.

* Entering a large Signal Threshold value may improve the simulation speed (especially in
systems having extensive chattering). However, making the value too large may reduce the
simulation accuracy.

Dependencies

To enable this parameter:

* Set the solver Type to Variable-step.
* Set Zero-crossing control to either Use local settings or Enable all.
* Set Algorithm to Adaptive.

Programmatic Use
Parameter: ZCThreshold

Value: 'auto’ | real number greater than or equal to zero
Default: 'auto’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

14-57

14 Solver Parameters

14-58

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Zero-Crossing Detection”

“Zero-crossing control” on page 14-49

“Consecutive zero-crossings violation” on page 9-13
“Time tolerance” on page 14-51

“Number of consecutive zero crossings” on page 14-53
“Solver Pane” on page 14-2

Periodic sample time constraint

Periodic sample time constraint

Description

Select constraints on the sample times defined by this model. If the model does not satisfy the
specified constraints during simulation, Simulink software displays an error message.

Category: Solver

Settings
Default: Unconstrained

Unconstrained

Specifies no constraints. Selecting this option causes Simulink software to display a field for
entering the solver step size.

Use the Fixed-step size (fundamental sample time) option to specify solver step size.
Ensure sample time independent

Specifies that Model blocks inherit sample time from the context in which they are used. You
cannot use a referenced model that has intrinsic sample times in a triggered subsystem or
iterator subsystem. If you plan on referencing this model in a triggered or iterator subsystem, you
should select Ensure sample time independent so that Simulink can detect sample time
problems while unit testing this model.

* “Referenced Model Sample Times”

* “S-Functions That Specify Sample Time Inheritance Rules” (Simulink Coder)

* “Conditionally Execute Referenced Models”

Simulink software checks to ensure that this model can inherit its sample times from a model that
references it without altering its behavior. Models that specify a step size (i.e., a base sample
time) cannot satisfy this constraint. For this reason, selecting this option causes Simulink
software to hide the group's step size field (see “Fixed-step size (fundamental sample time)” on
page 14-61).

Specified

Specifies that Simulink software check to ensure that this model operates at a specified set of
prioritized periodic sample times. Use the Sample time properties option to specify and assign
priorities to model sample times.

“Execute Multitasking Models” (Simulink Coder) explains how to use this option for multitasking
models.

Tips

During simulation, Simulink software checks to ensure that the model satisfies the constraints. If the
model does not satisfy the specified constraint, then Simulink software displays an error message.

14-59

14 Solver Parameters

14-60

Dependencies

This parameter is enabled only if the solver Type is set to Fixed-step.

Selecting Unconstrained enables the following parameters:

Fixed-step size (fundamental sample time)

Treat each discrete rate as a separate task

Higher priority value indicates higher task priority
Automatically handle rate transitions for data transfers

Selecting Specified enables the following parameters:

Sample time properties

Treat each discrete rate as a separate task

Higher priority value indicates higher task priority
Automatically handle rate transitions for data transfers

Programmatic Use

Parameter: SampleTimeConstraint

Value: 'unconstrained' | 'STIndependent' | 'Specified'
Default: 'unconstrained’

Recommended Settings

Application Setting

Debugging Update optimize using the specified minimum and
maximum values to Off

Traceability No impact

Efficiency No impact

Safety precaution Specified or Ensure sample time independent

See Also

Related Examples

“Referenced Model Sample Times”

“S-Functions That Specify Sample Time Inheritance Rules” (Simulink Coder)
“Conditionally Execute Referenced Models”

“Function-Call Models”

“Fixed-step size (fundamental sample time)” on page 14-61

“Execute Multitasking Models” (Simulink Coder)

“Solver Pane” on page 14-2

Fixed-step size (fundamental sample time)

Fixed-step size (fundamental sample time)

Description
Specify the step size used by the selected fixed-step solver.

Category: Solver

Settings

Default: auto

* Entering auto (the default) in this field causes Simulink to choose the step size.

» If the model specifies one or more periodic sample times, Simulink chooses a step size equal to the
greatest common divisor of the specified sample times. This step size, known as the fundamental
sample time of the model, ensures that the solver will take a step at every sample time defined by
the model.

» If the model does not define any periodic sample times, Simulink chooses a step size that divides
the total simulation time into 50 equal steps.

» If the model specifies no periodic rates and the stop time is Inf, Simulink uses 0.2 as the step
size. Otherwise, it sets the fixed-step size to

_ tstop = tstart

hmax - 50

» For Sine and Signal Generator source blocks, if the stop time is Inf, Simulink calculates the step

1 1

size using this heuristic:hyx = min((0.2), (§)(m))0therwise, the step size is:

tstop — tstart (l)(1)
50 ’ Freqmax

hmax = min

3

where Freqpay is the maximum frequency (Hz) of these blocks in the model.

Dependencies

This parameter is enabled only if the Periodic sample time constraint is set to Unconstrained.

Programmatic Use
Parameter: FixedStep
Type: character vector
Value: any valid value
Default: 'auto’

14-61

14 Solver Parameters

14-62

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Related Examples
. “Solver Pane” on page 14-2

Setting

No impact
No impact
No impact
No impact

Sample time properties

Sample time properties

Description
Specify and assign priorities to the sample times that this model implements.

Category: Solver

Settings
No Default
* Enter an Nx3 matrix with rows that specify the model's discrete sample time properties in order

from fastest rate to slowest rate.
» Faster sample times must have higher priorities.

Format

[period, offset, priority]

period The time interval (sample rate) at which updates occur during the simulation.

offset A time interval indicating an update delay. The block is updated later in the
sample interval than other blocks operating at the same sample rate.

priority Execution priority of the real-time task associated with the sample rate.

See “Specify Sample Time” for more details and options for specifying sample time.

Example
[fe.1, o, 1e1; [e.2, o, 11]; [0.3, 0, 12]1]

» Declares that the model should specify three sample times.
* Sets the fundamental sample time period to 0.1 second.
* Assigns priorities of 10, 11, and 12 to the sample times.

* Assumes higher priority values indicate lower priorities — the Higher priority value indicates
higher task priority option is not selected.

Tips

« Ifthe model's fundamental rate differs from the fastest rate specified by the model, specify the
fundamental rate as the first entry in the matrix followed by the specified rates, in order from
fastest to slowest. See “Purely Discrete Systems”.

» If the model operates at one rate, enter the rate as a three-element vector in this field — for
example, [0.1, 0, 10].

* When you update a model, Simulink software displays an error message if what you specify does
not match the sample times defined by the model.

+ If Periodic sample time constraint is set to Unconstrained, Simulink software assigns
priority 40 to the model base sample rate. If Higher priority value indicates higher task

14-63

14 Solver Parameters

14-64

priority is selected, Simulink software assigns priorities 39, 38, 37, and so on, to subrates of the
base rate. Otherwise, it assigns priorities 41, 42, 43, and so on, to the subrates.

* Continuous rate is assigned a higher priority than is the discrete base rate regardless of whether
Periodic sample time constraint is Specified or Unconstrained.

Dependencies

This parameter is enabled by selecting Specified from the Periodic sample time constraint list.

Programmatic Use
Parameter: SampleTimeProperty
Type: structure

Value: any valid matrix

Default: []

Note If you specify SampleTimeProperty, you must enter the sample time properties as a
structure with the following fields:

* SampleTime

+ Offset

* Priority

See Also

Related Examples

. “Purely Discrete Systems”
. “Specify Sample Time”

. “Solver Pane” on page 14-2

Extrapolation order

Extrapolation order

Description

Select the extrapolation order used by the odel4x solver to compute a model's states at the next
time step from the states at the current time step.

Category: Solver

Settings
Default: 4
1

Specifies first order extrapolation.
2

Specifies second order extrapolation.
3

Specifies third order extrapolation.
4

Specifies fourth order extrapolation.
Tip

Selecting a higher order produces a more accurate solution, but is more computationally intensive

per step size.

Dependencies

This parameter is enabled by selecting odel4x (extrapolation) from the Solver list.

Programmatic Use
Parameter: ExtrapolationOrder
Type: integer

Value: 1|2 |3 |4

Default: 4

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact
No impact

14-65

14 Solver Parameters

See Also

Related Examples

. “Fixed Step Solvers in Simulink”
. “Solver Pane” on page 14-2

14-66

Number of Newton's iterations

Number of Newton's iterations

Description

Specify the number of Newton's method iterations used by the ode1l4x and odelbe solvers to
compute a model's states at the next time step from the states at the current time step.

Category: Solver

Settings

Default: 1
Minimum: 1
Maximum: 2147483647

More iterations produce a more accurate solution, but are more computationally intensive per step
size.

Dependencies

This parameter is enabled by selecting any of the following solvers from the Solver list:

* odeldx (extrapolation)
 odelbe (Backward Euler)

Programmatic Use

Parameter: NumberNewtonIterations
Type: integer

Value: any valid number

Default: 1

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Fixed Step Solvers in Simulink”
. “Purely Discrete Systems”

14-67

14 Solver Parameters

. “Solver Pane” on page 14-2

14-68

Allow tasks to execute concurrently on target

Allow tasks to execute concurrently on target

Description
Enable concurrent tasking behavior for model.

Category: Solver

Settings

Default: Off

¥ On
Enable the model to be configured for concurrent tasking.

I off
Disable the model from being configured for concurrent tasking.

Tip

+ If the referenced model has a single rate, you do not need to select this check box to enable
concurrent tasking behavior.

Dependencies

This option is visible only if the Solver Type is set to Fixed Step and the Periodic sample time
constraint is set to Unconstrained or Specified. You can toggle it in the Additional
Parameters section of the Solver Configuration Settings.

* When you select this parameter check box, clicking the Configure Tasks button displays the
Concurrent Execution dialog.
* Ifyou clear this parameter check box, these parameters are enabled:

* Periodic sample time constraint

+ Treat each discrete rate as a separate task

* Automatically handle rate transition for data transfer
* Higher priority value indicates higher task priority

Programmatic Use
Parameter: ConcurrentTasks

Value: 'on' | 'off'
Default: 'on'

14-69

14 Solver Parameters

14-70

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
. “Concurrent Execution Window: Main Pane” on page 19-2
. “Solver Pane” on page 14-2

Auto scale absolute tolerance

Auto scale absolute tolerance

Description

Allow the solver to dynamically adjust the absolute tolerance value for each state.

Settings
Default: On
¥ on
Allow the solver to adjust the absolute tolerance
I off
Keep the absolute tolerance value fixed.
Dependencies
This option is visible when the following conditions are satisfied:
» Solver Type is set to Variable-step.

e Solveris not setto discrete (no continuous states).

If the Absolute Tolerance is set to auto, the AutoScaleAbsTol parameter is turned on by default
and cannot be disabled. To disable this parameter, you must first specify a finite non-negative value
for abstol.

Programmatic Use
Parameter: AutoScaleAbsTol
Value:'on'| 'off"'

Default: 'on’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
. “Absolute tolerance” on page 14-24
. “Solver Pane” on page 14-2

14-71

14 Solver Parameters

. “Absolute Tolerances”

14-72

Integration method

Integration method

Description

Specify integration method of odeN solver

Settings
Default: ode3

odel (Euler)

Use the odel solver with a first order of accuracy
ode2 (Heun)

Use the ode2 solver with a second order of accuracy
ode3 (Bogacki-Shampine)

Use the ode3 solver with a third order of accuracy
ode4 (Runge-Kutta)

Use the ode4 solver with a fourth order of accuracy
odeb (Dormand-Prince)

Use the ode5 solver with a fifth order of accuracy
0de8 (Dormand-Prince)

Use the ode8 solver with an eighth order of accuracy
ode14x (extrapolation)

Use the odel4x implicit solver.
odelbe (Backward Euler)

Use the odelbe solver. This solver uses the first-order Backward Euler integration method.

Dependencies
This option is visible when the following conditions are satisfied:

* Solver Type is set to Variable-step.
* Solver is set to odeN (Nonadaptive).

Command-Line Information

Parameter: ODENIntegrationMethod
Value:odel|ode2|ode3|oded|ode5|ode8|odeldx|odelbe
Default: ode3

Recommended Settings

Application Setting
Debugging No impact

14-73

14 Solver Parameters

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Max step size” on page 14-16
. “Solver Pane” on page 14-2

. “Solver” on page 14-10

More About

. “Fixed-Step Continuous Solvers”
. “Fixed-Step Versus Variable-Step Solvers”

14-74

Hardware Implementation Parameters

15 Hardware Implementation Parameters

Hardware Implementation Pane

15-2

The Hardware Implementation category includes parameters for configuring a hardware board to
run a model. Hardware implementation parameters specify different options for building models to
run on hardware boards or devices including communication connections and hardware specific
parameters. Hardware Implementation pane parameters do not control hardware or compiler
behavior. The parameters describe hardware and compiler properties for the MATLAB software.

» Specifying hardware characteristics enables simulation of the model to detect error conditions
that can arise when executing code, such as hardware overflow.

* MATLAB uses the information to generate code for the platform that runs as efficiently as
possible. MATLAB software also uses the information to give bit-true agreement for the results of
integer and fixed-point operations in simulation and generated code.

Parameter

Description

“Hardware board” on page 15-5

Select the hardware board upon which to run
your model.

“Code Generation system target file” on page 15-
7

System target file that you select on the Code
Generation pane.

“Device vendor” on page 15-8

Select the manufacturer of the hardware board to
use to implement the system that this model
represents.

“Device type” on page 15-10

Select the type of hardware to use to implement
the system that this model represents.

These configuration parameters are in the Device details section.

Parameter

Description

“Number of bits: char” on page 15-21

Describe the character bit length for the
hardware.

“Number of bits: short” on page 15-23

Describe the data bit length for the hardware.

“Number of bits: int” on page 15-25

Describe the data integer bit length for the
hardware.

“Number of bits: long” on page 15-27

Describe the data bit lengths for the hardware.

“Number of bits: long long” on page 15-29

Describe the length in bits of the C Long long
data type that the hardware supports.

“Number of bits: float” on page 15-31

Describe the bit length of floating-point data for
the hardware (read only).

“Number of bits: double” on page 15-32

Describe the bit-length of double data for the
hardware (read only).

“Number of bits: native” on page 15-33

Describe the microprocessor native word size for
the hardware.

“Number of bits: pointer” on page 15-35

Describe the bit-length of pointer data for the
hardware.

Hardware Implementation Pane

Parameter

Description

“Number of bits: size t” on page 15-37

Describe the bit-length of size t data for the
hardware.

“Number of bits: ptrdiff t” on page 15-39

Describe the bit-length of ptrdiff t data for
the hardware.

“Largest atomic size: integer” on page 15-41

Specify the largest integer data type that can be
atomically loaded and stored on the hardware.

“Largest atomic size: floating-point” on page 15-
43

Specify the largest floating-point data type that
can be atomically loaded and stored on the
hardware.

“Byte ordering” on page 15-45

Describe the byte ordering for the hardware
board.

“Signed integer division rounds to” on page 15-
47

Describe how your compiler for the hardware
rounds the result of dividing two signed integers.

“Shift right on a signed integer as arithmetic
shift” on page 15-49

Describe how your compiler for the hardware fills
the sign bit in a right shift of a signed integer.

“Support long long” on page 15-51

Specify that your C compiler supports the C Long
long data type. Most C99 compilers support
long long.

These configuration parameters are in the Advanced parameters section.

Parameter

Description

“Test hardware is the same as production
hardware” on page 2-2

Specify whether the test hardware differs from
the production hardware.

“Test device vendor and type” on page 2-3

Select the manufacturer and type of the
hardware to use to test the code generated from
the model.

“Number of bits: char” on page 2-15

Describe the character bit length for the
hardware that you use to test code.

“Number of bits: short” on page 2-17

Describe the data bit length for the hardware
that you use to test code.

“Number of bits: int” on page 2-19

Describe the data integer bit length of the
hardware that you use to test code.

“Number of bits: long” on page 2-21

Describe the data bit lengths for the hardware
that you use to test code.

“Number of bits: long long” on page 2-23

Describe the length in bits of the C Long long
data type that the test hardware supports.

“Number of bits: float” on page 2-25

Describe the bit length of floating-point data for
the hardware that you use to test code (read
only).

“Number of bits: double” on page 2-26

Describe the bit-length of double data for the
hardware that you use to test code (read only).

“Number of bits: native” on page 2-27

Describe the microprocessor native word size for
the hardware that you use to test code.

15-3

15 Hardware Implementation Parameters

15-4

Parameter

Description

“Number of bits: pointer” on page 2-29

Describe the bit-length of pointer data for the
hardware that you use to test code.

“Number of bits: size t” on page 2-30

Describe the bit-length of size t data for the
hardware that you use to test code.

“Number of bits: ptrdiff t” on page 2-32

Describe the bit-length of ptrdiff t data for
the hardware that you use to test code.

“Largest atomic size: integer” on page 2-34

Specify the largest integer data type that can be
atomically loaded and stored on the hardware
that you use to test code.

“Largest atomic size: floating-point” on page 2-36

Specify the largest floating-point data type that
can be atomically loaded and stored on the
hardware that you use to test code.

“Byte ordering” on page 2-38

Describe the byte ordering for the hardware that
you use to test code.

“Signed integer division rounds to” on page 2-40

Describe how your compiler for the test hardware
rounds the result of dividing two signed integers.

“Shift right on a signed integer as arithmetic
shift” on page 2-42

Describe how your compiler for the test hardware
fills the sign bit in a right shift of a signed integer.

“Support long long” on page 2-44

Specify that your C compiler supports the C long
long data type.

“Use Simulink Coder Features” (Simulink Coder)

Enable “Simulink Coder” features for models
deployed to “Simulink Supported Hardware”.

“Use Embedded Coder Features” (Embedded
Coder)

Enable “Embedded Coder” features for models
deployed to “Simulink Supported Hardware”.

The following model configuration parameters have no other documentation.

Parameter

Description

TargetPreprocMaxBitsSint
int - 32

Specify the maximum number of bits that the
target C preprocessor can use for signed integer
math.

TargetPreprocMaxBitsUint
int - 32

Specify the maximum number of bits that the
target C preprocessor can use for unsigned
integer math.

See Also

Related Examples
. “Simulink Supported Hardware”

Hardware board

Hardware board

Select the hardware board upon which to run your model.

Changing this parameter updates the dialog box display so that it displays parameters that are
relevant to your hardware board.

To install support for a hardware board, start the Support Package Installer by selecting Get
Hardware Support Packages. Alternatively, in the MATLAB Command Window, enter
supportPackageInstaller.

After installing support for a hardware board, reopen the Configuration Parameters dialog box and
select the hardware board.

Settings

Default: None if the specified system target file is ert.tlc, realtime.tlc, or autosar.tlc.
Otherwise, the default is Determine by Code Generation system target file.
None

No hardware board is specified. The system target file specified for the model is ert. tlc,
realtime.tlc, or autosar.tlc.

Determine by Code Generation system target file
Specifies that the system target file setting determines the hardware board.
Get Hardware Support Packages

Invokes the Support Package Installer. After you install a hardware support package, the list
includes relevant hardware board names.

Hardware board name
Specifies the hardware board to use to implement the system this model represents.

Tips
* When you select a hardware board, parameters for board settings appear in the dialog box display.
» After you select a hardware board, you can select a device vendor and type.

Dependencies

The Device vendor and Device type parameter values reflect available device support for the
selected hardware board.

When you select a hardware board, the selection potentially changes the Toolchain parameter
value and other configuration parameter values. For example, if you change the hardware board
selection to ARM Cortex-A9 (QEMU), the Toolchain parameter value changes to a supported
toolchain, such as Linaro Toolchain v4.8.

Command-Line Information
Parameter: HardwareBoard

15-5

15 Hardware Implementation Parameters

Type: character array
Default: 'Determine by Code Generation system target file'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

15-6

Code Generation system target file

Code Generation system target file

System target file that you select on the Code Generation pane.

See Also
“Hardware Implementation Pane” on page 15-2

15-7

15 Hardware Implementation Parameters

Device vendor

15-8

Select the manufacturer of the hardware board to use to implement the system that this model
represents.

Settings
Default: Intel

If you have installed target support packages, the list of settings can include additional
manufacturers.

« AMD

* ARM Compatible

+ Altera

* Analog Devices

* Apple

* Atmel

* Freescale

+ Infineon

+ Intel

* Microchip

* NXP

* Renesas

* STMicroelectronics
* Texas Instruments
* ASIC/FPGA

* Custom Processor

Tips

* The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate the device
vendor and device type values by using the characters ->. For example: 'Intel->x86-64
(Linux 64)"'.

* Ifyou have a Simulink Coder license and you want to add Device vendor and Device type values
to the default set, see “Register New Hardware Devices” (Simulink Coder).

Dependencies

The Device vendor and Device type parameter values reflect available device support for the
selected hardware board.

Device vendor

Command-Line Information
Parameter: ProdHWDeviceType
Type: string

Value: any valid value (see tips)
Default: 'Intel’

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

Select your Device vendor and Device type if they are
available in the drop-down list. If your Device vendor
and Device type are not available, set device-specific
values by using Custom Processor.

* “Hardware Implementation Pane” on page 15-2

* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

15-9

15 Hardware Implementation Parameters

Device type

Select the type of hardware to use to implement the system that this model represents.

Settings
Default: x86—64 (Windows64)

If you have installed target support packages, the list of settings includes additional types of
hardware.

AMD options:

*+ Athlon 64

+ K5/K6/Athlon

* x86-32 (Windows 32)
*+ x86—64 (Linux 64)
*+ x86—64 (macO0S)

* x86—64 (Windows64)

ARM options:

* ARM 10

* ARM 11

* ARM 7

* ARM 8

* ARM 9

* ARM Cortex-A

* ARM Cortex-M

* ARM Cortex-R

* ARM Cortex

* ARM 64-bit (LP64)
* ARM 64-bit (LLP64)

Altera options:
* SoC (ARM CortexA)

Analog Devices options:

ADSP-CM40x (ARM Cortex-M)
* Blackfin

SHARC

* TigerSHARC

Apple options:

15-10

Device type

ARM64

Atmel options:

AVR
AVR (32-bit)
AVR (8-bit)

Freescale options:

32-bit PowerPC
68332

68HCO8

68HC11
ColdFire
DSP563xx (16-bit mode)
HC(S)12
MPC52xx
MPC5500
MPC55xx

MPC5xx

MPC7xxx
MPC82xx
MPC83xx
MPC85xx
MPC86xx

MPC8xx

S08

S12x

StarCore

Infineon options:

Cl6x, XCléx
TriCore

Intel options:

x86—32 (Windows32)
x86—64 (Linux 64)
x86—64 (mac0S)

x86—64 (Windows64)

Microchip options:

15-11

15 Hardware Implementation Parameters

+ PIC18
* dsPIC

NXP options:

* Cortex—Mo/MoO+
e Cortex—M3
e Cortex—M4

Renesas options:

.« M16C
. M32C

. R8C/Tiny
. RH850

. RL78

.« RX

. RZ

. SH-2/3/4
. V850

STMicroelectronics:
* ST10/Superlo
Texas Instruments options:

+ (2000

+ (5000

+ (6000

* MSP430

* Stellaris Cortex—M3
+ TMS470

+ TMS570 Cortex—R4

ASIC/FPGA options:
* ASIC/FPGA

Tips
» Before you specify the device type, select the device vendor.

» To view parameters for a device type, click the arrow button to the left of Device details.
* Selecting a device type specifies the hardware device to define system constraints:

* Default hardware properties appear as the initial values.
* You cannot change parameters with only one possible value.

15-12

Device type

The following table lists values for each device type.

Parameters with more than one possible value provide a list of valid values.

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right |long
Device size ng
type ch [sho [in |lon|lon |nativ|poin [size |ptrdif |int |float
ar rt |t (g |g e ter |t [ft
lon
9
AMD
Athlon 64 |8 |16 |3 (64 |64 |64 |64 |64 |64 Cha |None |Little |Zero v O
2 r Endia
n
K5/K6/ 8 |16 |3 |32 |64 |32 |32 32 |32 Cha |None |Little |Zero v O
Athlon 2 r Endia
n
x86—32 8 (16 |3 |32 |64 |32 |32 32 |32 Cha |Float |Little |Zero v O
(Windows3 2 r Endia
2) n
x86—64 8 (16 |3 |64 |64 |64 |64 |64 |64 Cha |Float |Little |Zero v/ O
(Linux 2 r Endia
64) n
x86—64 8 |16 |3 |64 |64 [64 |64 |64 |64 Cha |Float |Little |Zero v O
(mac0S) 2 r Endia
n
x86—64 8 |16 |3 |32 (64 [64 |64 |64 |64 Cha |Float |Little |Zero v O
(Windows6 2 r Endia
4) n
ARM Compatible
ARM 8 (16 |3 |32 |64 |32 |32 32 |32 Lon |Float |Little |Zero v O
7/8/9/10 2 g Endia
n
ARM 11 8 |16 |3 |32 |64 |32 |32 32 (32 Lon |Doub |Little |Zero v O
2 g le Endia
n
ARM 8 |16 |3 |32 |64 |32 |32 32 |32 Lon |Doub |Little |Zero v O
Cortex 2 g le Endia
n

15-13

15 Hardware Implementation Parameters

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
ARM 64 - 8 |16 |3 |64 |64 |64 |64 |64 |64 Lon |Doub |Little |Zero v v
bit 2 g le Endia
(LP64) n
ARM 64 - 8 |16 |3 |32 (64 [64 |64 |64 |64 Lon |Doub |Little |Zero v v
bit 2 g le Endia
(LLP64) n
Altera
SoC (ARM |8 |16 |3 (32 |64 |32 32 32 (32 Cha |[None |Little |Zero v/ O
Cortex A) 2 r Endia
n
Analog Devices
ADSP - 8 |16 |3 (32|64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
CM40x (ARM 2 g le Endia
Cortex-M) n
Blackfin |8 |16 (3 (32 [64 |32 32 32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
SHARC 32 {32 (3 |32 |64 (32 32 32 |32 Lon [Doub |Big Zero v/ O
2 g le Endia
n
TigerSHAR |32 |32 |3 (32 (64 (32 |32 |32 |32 Lon |Doub |Little |Zero v O
C 2 g le Endia
n
Apple
ARM64 8 |16 |3 |64 |64 |64 64 64 |64 Cha |Float |Little |Zero v O
2 r Endia
n
Atmel
AVR 8 (16 |1 |32 |64 |8 16 16 |16 Cha |None |Little |Zero v O
6 r Endia
n

15-14

Device type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
g
AVR (32- (8 (16 |3 (32 (64 |32 32 32 (32 Cha |[None |Little |Zero v O
bit) 2 r Endia
n
AVR (8- 8 [16 |1 |32 |64 |16 16 16 |16 Cha |None |Little |Zero v O
bit) 6 r Endia
n
Freescale
32-bit 8 |16 |3 |32 |64 |32 32 32 (32 Lon [Doub |Big Zero v/ O
PowerPC 2 g le Endia
n
68332 8 (16 |3 [32 |64 |32 32 32 (32 Cha |[None |Big Zero v O
2 r Endia
n
68HCO8 8 [16 |1 |32 |64 |8 8 16 |8 Cha |[None |Big Zero v O
6 r Endia
n
68HC11 8 |16 |1 |32 |64 |8 8 16 |16 Cha |None |Big Zero v O
6 r Endia
n
ColdFire |8 |16 (3 (32 |64 |32 32 32 (32 Cha |[None |Big Zero v/ O
2 r Endia
n
DSP563xx (8 |16 |1 [32 |64 |16 16 16 |16 Cha |[None |Little |Zero v O
(16-bit 6 r Endia
mode) n
DSP5685x (8 |16 |1 |32 (64 |16 16 16 |16 Cha |Float |Little |Zero v O
6 r Endia
n
HC(S) 12 8 |16 |1 |32 |64 |16 16 16 |16 Cha |None |Big Zero v O
6 r Endia
n

15-15

15 Hardware Implementation Parameters

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
MPC52xx, |8 |16 |3 [32 |64 |32 |32 32 |32 Lon |None |Big Zero v O
MPC5500, 2 g Endia
MPC55xx, n
MPC5xx,
PC5xx,
MPC7xxx,
MPC82xx,
MPC83xx,
MPC86xx,
MPC8xx
MPC85xx |8 |16 |3 [32 |64 (32 |32 32 |32 Lon |Doub |Big Zero v O
2 g le Endia
n
S08 8 (16 |1 |32 |64 |16 16 |16 |16 Cha |None |Big Zero v O
6 r Endia
n
S12x 8 (16 |1 |32 |64 |16 16 16 |16 Cha |[None |Big Zero v O
6 r Endia
n
StarCore |8 |16 (3 (32 |64 |32 |32 32 |32 Cha |None |Little |Zero v O
2 r Endia
n
Infineon
Cl6x, 8 |16 |1 |32 |64 |16 16 16 |16 Cha |None |Little |Zero v O
XC16x 6 r Endia
n
TriCore |8 (16 |3 |32 |64 |32 32 32 |32 Cha |[None |Little |Zero v/ O
2 r Endia
n
Intel
x86-32 8 |16 |3 |32 |64 |32 |32 32 |32 Cha |Float |Little |Zero v O
(Windows3 2 r Endia
2) n

15-16

Device type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
9
x86—64 8 |16 |3 |64 |64 |64 |64 |64 |64 Cha |Float |Little |Zero v O
(Linux 2 r Endia
64) n
x86—64 8 |16 |3 |64 |64 |64 |64 |64 |64 Cha |Float |Little |Zero v O
(mac0S) 2 r Endia
n
x86—64 8 |16 |3 |32 |64 [64 |64 |64 |64 Cha |Float |Little |Zero v O
(Windows6 2 r Endia
4) n
Microchip
PIC18 8 |16 |1 |32 |64 |8 8 24 |24 Cha |None |Little |Zero v O
6 r Endia
n
dsPIC 8 |16 |1 |32 (64 |16 |16 |16 |16 Cha |None |Little |Zero v O
6 r Endia
n
NXP
Cortex— |8 (16 (3 |32 |64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
MO/MO+ 2 g le Endia
n
Cortex-M3|8 (16 (3 |32 |64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
Cortex—M4 |8 (16 (3 |32 |64 |32 (32 |32 |32 Lon |Doub |Little |Zero v O
2 g le Endia
n
Renesas
M16C 8 (16 |1 |32 |64 |16 16 16 |16 Cha |[None |Little |Zero v/ O
6 r Endia
n
M32C 8 |16 |1 |32 (64 |16 |16 |16 |16 Cha |None |Little |Zero v O
6 r Endia
n

15-17

15 Hardware Implementation Parameters

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch [sho |in [lon|lon [nativ|poin |size |ptrdif [int |float
ar rt |t g (g |e ter |t (ft
lon
g
R8C/Tiny |8 |16 (1 (32 |64 |16 16 16 |16 Cha |[None |Little |Zero v O
6 r Endia
n
RH850 8 |16 |3 |32 |64 (32 32 32 |32 Cha |None |Little |Zero v O
2 r Endia
n
RL78 8 (16 |1 [32 |64 |16 16 16 |16 Cha |[None |Little |Zero v O
6 r Endia
n
RX 8 |16 |3 |32 |64 (32 32 32 |32 Cha |None |Little |Zero v O
2 r Endia
n
RZ 8 (16 |3 (32 |64 |32 32 32 (32 Lon |[Doub |Little |Zero v O
2 g le Endia
n
SH-2/3/4 |8 |16 |3 [32 [64 |32 32 32 |32 Cha |[None |Big Zero v O
2 r Endia
n
V850 8 (16 |3 [32 |64 |32 32 32 (32 Cha |[None |Little |Zero v O
2 r Endia
n
STMicroelectronics
ST10/ 8 |16 |1 [32 |64 |16 16 16 |16 Cha |[None |Little |Zero v O
Superl0 6 r Endia
n
Texas Instruments
C2000 16 |16 |1 |32 |64 |16 32 16 |16 Int [None |Little |Zero v O
6 Endia
n
C5000 16 (16 |1 |32 |64 |16 16 16 |16 Int |None |Big Zero v/ O
6 Endia
n

15-18

Device type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to|Shift |Long
vendor / atomic orderi right [long
Device size ng
type ch |sho |in |lon{lon |nativ|poin [size |ptrdif int |float
ar rt |t g (g |e ter |t (ft
lon
g
C6000 8 |16 |3 |40 |64 (32 32 32 (32 Int [None |Little |Zero v O
2 Endia
n
MSP430 8 [16 |1 |32 |64 |16 16 16 |16 Cha |None |Little |Zero v O
6 r Endia
n
Stellaris |8 |16 |3 [32 |6 32 32 32 (32 Lon |[Doub |Little |Zero v O
Cortex—M3 2 g le Endia
n
TMS470 8 |16 |3 |32 |64 |32 32 32 (32 Lon |[Doub |Little |Zero v O
2 g le Endia
n
TMS570 8 |16 |3 |32 |64 |32 32 32 |32 Lon [Doub |Big Zero v/ O
Cortex—R4 2 g le Endia
n
ASIC/FPGA
ASIC/FPGA [NA|NA [N |[NA|NA [NA |NA |NA |NA NA [NA [NA NA NA NA
A

* The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate the device

vendor and device type values by using the characters ->. For example: 'Intel->x86-64

(Linux 64)"'.

* Ifyou have a Simulink Coder license and you want to add Device vendor and Device type values
to the default set, see “Register New Hardware Devices” (Simulink Coder).

Dependencies

The Device vendor and Device type parameter values reflect available device support for the

selected hardware board.

Menu options that are available in the menu depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following

parameters:

15-19

15 Hardware Implementation Parameters

15-20

* Number of bits: char

* Number of bits: short

* Number of bits: int

* Number of bits: long

* Number of bits: long long

* Number of bits: float

* Number of bits: double

* Number of bits: native

* Number of bits: pointer

* Largest atomic size: integer

+ Largest atomic size: floating-point
* Byte ordering

* Signed integer division rounds to
* Shift right on a signed integer as arithmetic shift
* Support long long

Whether you can modify the setting of a device-specific parameter varies according to device type.

Command-Line Information
Parameter: ProdHWDeviceType

Type: string

Value: any valid value (see tips)

Default: 'Intel->x86-64 (Windows64)'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

Number of bits: char

Number of bits: char

Description
Describe the character bit length for the selected hardware.

Category: Hardware Implementation

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.
Tip

All values must be a multiple of 8.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerChar

Type: integer

Value: any valid value

Default: 8

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

15-21

15 Hardware Implementation Parameters

15-22

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Number of bits: short

Number of bits: short

Description
Describe the data bit length for the selected hardware.

Category: Hardware Implementation

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.
Tip

All values must be a multiple of 8.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific

value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerShort

Type: integer

Value: any valid value

Default: 16

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

15-23

15 Hardware Implementation Parameters

15-24

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Number of bits: int

Number of bits: int

Description
Describe the data integer bit length of the selected hardware.

Category: Hardware Implementation

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number from 8 through 32.
Tip

All values must be a multiple of 8.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerInt

Type: integer

Value: any valid value

Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

15-25

15 Hardware Implementation Parameters

15-26

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Number of bits: long

Number of bits: long

Description
Describe the data bit lengths for the selected hardware.

Category: Hardware Implementation

Settings

Default: 32

Minimum: 32

Maximum: 128

Enter a value from 32 through 128.

Tip

All values must be a multiple of 8 and from 32 through 128.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLong

Type: integer

Value: any valid value

Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

15-27

15 Hardware Implementation Parameters

15-28

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Number of bits: long long

Number of bits: long long

Description

Describe the length in bits of the C Long long data type for the selected hardware.

Category: Hardware Implementation

Settings
Default: 64
Minimum: 64
Maximum: 128

The number of bits that represent the C Llong long data type.

Tips

* Usethe C long long data type only if your C compiler supports Long long.

* You can change the value of this parameter for custom targets only. For custom targets, all values
must be a multiple of 8 and be between 64 and 128.

Dependencies

* Enable long long enables use of this parameter.
* The value of this parameter must be greater than or equal to the value of Number of bits: long.

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLonglLong
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

15-29

15 Hardware Implementation Parameters

15-30

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Number of bits: float

Number of bits: float

Description

Describe the bit length of floating-point data for the selected hardware (read only).

Category: Hardware Implementation

Settings
Default: 32

Always equals 32.

Command-Line Information
Parameter: ProdBitPerFloat

Type: integer

Value: 32 (read-only)

Default: 32

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

No recommendation for simulation without code

generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom

Processor.

* Hardware Implementation Options (Simulink Coder)

* Specifying Production Hardware Characteristics (Simulink Coder)

15-31

15 Hardware Implementation Parameters

Number of bits: double

Description

Describe the bit-length of double data for the selected hardware (read only).

Category: Hardware Implementation

Settings
Default: 64

Always equals 64.

Command-Line Information
Parameter: ProdBitPerDouble

Type: integer
Value: 64 (read only)
Default: 64

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

15-32

Number of bits: native

Number of bits: native

Description

Describe the microprocessor native word size for the selected hardware.

Category: Hardware Implementation

Settings

Default: 64

Minimum: 8

Maximum: 64

Enter a value from 8 through 64.
Tip

All values must be a multiple of 8.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific

value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdWordSize

Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application
Debugging
Traceability
Efficiency

Setting

No impact

No impact
Target specific

15-33

15 Hardware Implementation Parameters

15-34

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Number of bits: pointer

Number of bits: pointer

Description
Describe the bit-length of pointer data for the selected hardware.

Category: Hardware Implementation

Settings
Default: 64
Minimum: 8

Maximum: 64

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerPointer
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)

15-35

15 Hardware Implementation Parameters

» Specifying Production Hardware Characteristics (Simulink Coder)

15-36

Number of bits: size_t

Number of bits: size t

Description

Describe the bit-length of size t data for the selected hardware.

If ProdEqTarget is off, an Embedded Coder processor-in-the-loop (PIL) simulation checks this
setting with reference to the target hardware. If ProdEqTarget is on, the PIL simulation checks the

ProdBitPerSizeT setting.

Category: Hardware Implementation

Settings
Default: 64

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerSizeT
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

15-37

15 Hardware Implementation Parameters

See Also

* “Hardware Implementation Pane” on page 15-2

» Hardware Implementation Options (Simulink Coder)

* Specifying Production Hardware Characteristics (Simulink Coder)
* “Verification of Code Generation Assumptions” (Embedded Coder)

15-38

Number of bits: ptrdiff t

Number of bits: ptrdiff t

Description

Describe the bit-length of ptrdiff t data for the selected hardware.

If ProdEqTarget is off, an Embedded Coder processor-in-the-loop (PIL) simulation checks this
setting with reference to the target hardware. If ProdEqTarget is on, the PIL simulation checks the

ProdBitPerPtrDiffT setting.

Category: Hardware Implementation

Settings
Default: 64

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerPtrDiffT
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

15-39

15 Hardware Implementation Parameters

See Also

* “Hardware Implementation Pane” on page 15-2

» Hardware Implementation Options (Simulink Coder)

* Specifying Production Hardware Characteristics (Simulink Coder)
* “Verification of Code Generation Assumptions” (Embedded Coder)

15-40

Largest atomic size: integer

Largest atomic size: integer

Description

Specify the largest integer data type that can be atomically loaded and stored on the selected
hardware.

Category: Hardware Implementation

Settings
Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and stored on
the hardware.

Short

Specifies that short is the largest integer data type that can be atomically loaded and stored on
the hardware.

Int

Specifies that int is the largest integer data type that can be atomically loaded and stored on the
hardware.

Long

Specifies that long is the largest integer data type that can be atomically loaded and stored on
the hardware.

LonglLong

Specifies that Llong long is the largest integer data type that can be atomically loaded and
stored on the hardware.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or unnecessary
semaphore protection, based on data size, in generated multirate code.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

* You can set this parameter to LongLong only if the hardware supports the C Long long data
type and you have selected Enable long long.

Command-Line Information
Parameter: ProdLargestAtomicInteger
Type: string

15-41

15 Hardware Implementation Parameters

15-42

Value: 'Char' | 'Short' | 'Int' | 'Long"' | 'LongLong’
Default: 'Char'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

Largest atomic size: floating-point

Largest atomic size: floating-point

Description

Specify the largest floating-point data type that can be atomically loaded and stored on the selected
hardware.

Category: Hardware Implementation

Settings
Default: Float

Float

Specifies that float is the largest floating-point data type that can be atomically loaded and
stored on the hardware.

Double

Specifies that double is the largest floating-point data type that can be atomically loaded and
stored on the hardware.

None

Specifies that there is no applicable setting or not to use this parameter in generating multirate
code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or unnecessary
semaphore protection, based on data size, in generated multirate code.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdLargestAtomicFloat
Type: string

Value: 'Float' | 'Double' | 'None'
Default: 'Float'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

15-43

15 Hardware Implementation Parameters

15-44

Application Setting

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2

* Hardware Implementation Options (Simulink Coder)

* Specifying Production Hardware Characteristics (Simulink Coder)
* “Verification of Code Generation Assumptions” (Embedded Coder)

Byte ordering

Byte ordering

Description
Describe the byte ordering for the selected hardware.

Category: Hardware Implementation

Settings
Default: Little Endian

Unspecified
Specifies that the code determines the endianness of the hardware. This choice is the least
efficient.
Big Endian
The most significant byte appears first in the byte ordering.
Little Endian
The least significant byte appears first in the byte ordering.

Dependencies

» Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: ProdEndianess

Type: string

Value: 'Unspecified' | 'LittleEndian' | 'BigEndian’
Default: 'Little Endian'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

15-45

15 Hardware Implementation Parameters

15-46

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Signed integer division rounds to

Signed integer division rounds to

Description

Describe how your compiler for the hardware rounds the result of dividing two signed integers.

Category: Hardware Implementation

Settings

Default: Zero

Undefined

Choose this option if neither Zero nor Floor describes the compiler behavior, or if that behavior
is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer to zero as
the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer to negative
infinity.

Tips

* To simulate rounding behavior of the C compiler that you use to compile generated code, use the
Integer rounding mode parameter for blocks. This setting appears on the Signal Attributes

pane of the parameter dialog boxes of blocks that can perform signed integer arithmetic, such as
the Product block.

* For most blocks, the value of Integer rounding mode completely defines rounding behavior. For
blocks that support fixed-point data and the Simplest rounding mode, the value of Signed

integer division rounds to also affects rounding. For details, see “Rounding” (Fixed-Point
Designer).

* For more information on how this parameter affects code generation, see Hardware
Implementation Options (Simulink Coder).

» This table lists the compiler behavior described by the options for this parameter.

N D Ideal N/D Zero Floor Undefined
33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8or-9
33 -4 -8.25 -8 -9 -8or-9
-33 -4 8.25 8 8 8or9

15-47

15 Hardware Implementation Parameters

Dependency

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

» This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdIntDivRoundTo

Type: string

Value: 'Floor' | 'Zero' | 'Undefined'’
Default: 'Zero'

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.
Zero for production code generation.

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

15-48

Shift right on a signed integer as arithmetic shift

Shift right on a signed integer as arithmetic shift

Description
Describe how your compiler for the hardware fills the sign bit in a right shift of a signed integer.

Category: Hardware Implementation

Settings
Default: On

|7On

Generates simple, efficient code whenever the Simulink model performs arithmetic shifts on
signed integers.

I off
Generates fully portable but less efficient code to implement right arithmetic shifts.

Tips
» Select this parameter if the C compiler implements a signed integer right shift as an arithmetic
right shift.

* An arithmetic right shift fills bits vacated by the right shift with the value of the most significant
bit. The most significant bit indicates the sign of the number in twos complement notation.

Dependency

* Selecting a device by using the Device vendor and Device type parameters sets a device-specific
value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdShiftRightIntArith
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

15-49

15 Hardware Implementation Parameters

15-50

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2
* Hardware Implementation Options (Simulink Coder)
» Specifying Production Hardware Characteristics (Simulink Coder)

Support long long

Support long long

Description

Specify that your C compiler supports the C Long long data type. Most C99 compilers support Long
long.

Category: Hardware Implementation

Settings
Default: Off
4 On
Enables use of C long long data type for simulation and code generation on the hardware.

Off

Disables use of C long long data type for simulation or code generation on the hardware.
Tips
» This parameter is enabled only if the selected hardware supports the C Llong long data type.
» If your compiler does not support C Long long, do not select this parameter.
Dependencies

This parameter enables Number of bits: long long.

Command-Line Information
Parameter: ProdLongLongMode
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On (execution, ROM)

15-51

15 Hardware Implementation Parameters

15-52

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your Device
vendor and Device type if they are available in the drop-
down list. If your Device vendor and Device type are
not available, set device-specific values by using Custom
Processor.

See Also

* “Hardware Implementation Pane” on page 15-2

* Hardware Implementation Options (Simulink Coder)

» Specifying Production Hardware Characteristics (Simulink Coder)
* “Number of bits: long long” on page 15-29

Signal Properties Dialog Box

16 Signal Properties Dialog Box

Data Transfer Options for Concurrent Execution

16-2

In this section...

“Specify data transfer settings” on page 16-2

“Data transfer handling option” on page 16-2

“Extrapolation method (continuous-time signals)” on page 16-2
“Initial condition” on page 16-2

This tab displays the data transfer options for configuring models for targets with multicore
processors. To enable this tab, in the Model Explorer for the model, right-click Configuration, then
select the Show Concurrent Execution option.

Specify data transfer settings

Enable custom data transfer settings. For more information, see “Configure Data Transfer Settings
Between Concurrent Tasks”.

Data transfer handling option

Select a data transfer handling option. For more information, see “Configure Data Transfer Settings
Between Concurrent Tasks”.

Extrapolation method (continuous-time signals)

Select a data transfer extrapolation method. For more information, see “Configure Data Transfer
Settings Between Concurrent Tasks”.

Initial condition

For discrete signals, this parameter specifies the initial input on the reader side of the data transfer.
It applies for data transfer types Ensure Data Integrity Only and Ensure deterministic
transfer (maximum delay). Simulink does not allow this value to be Inf or NaN.

For continuous signals, the extrapolation method of the initial input on the reader side of the data
transfer uses this parameter. It applies for data transfer types Ensure Data Integrity Only and
Ensure deterministic transfer (maximum delay). Simulink does not allow this value to be
Inf or NaN.

For more information, see “Configure Data Transfer Settings Between Concurrent Tasks”.

See Also
Signal Properties

Simulink Preferences Window

17 Simulink Preferences Window

Font Styles for Models

Font Styles Overview

Configure font options for blocks, lines, and annotations.
Configuration
New models use these styles. For details, see “Specify Fonts in Models”.

1 Use the lists to specify font types, styles, and sizes to apply to new block diagrams.
2 (Click OK.

17-2

Simulink Mask Editor

* “Mask Editor Overview” on page 18-2

» “Dialog Control Operations” on page 18-30

» “Specify Data Types Using DataTypeStr Parameter” on page 18-33
* “Design a Mask Dialog Box” on page 18-39

18 Simulink Mask Editor

Mask Editor Overview

18-2

In this section...

“Parameters & Dialog Pane” on page 18-2
“Code Pane” on page 18-16

“Icon Pane” on page 18-19

“Constraints” on page 18-27

“Additional Options” on page 18-28

A mask is a custom user interface for a block that hides the block's contents, making it appear to the
user as an atomic block with its own icon and parameter dialog box.

The Mask Editor dialog box helps you create and customize the block mask. The Mask Editor
dialog box opens when you create or edit a mask. You can access the Mask Editor dialog box by any
of these options:

To create mask,

* Inthe Modeling tab, under Component, click Create System Mask.

* Select the block and on the Block tab, in the Mask group, click Create Mask. The Mask Editor
opens.

To edit mask,

* On the Block tab, in the Mask group, click Edit Mask.
* Right-click the block and select Mask > Edit Mask.

Note You can also use the keyboard shortcut CTRL + M to open Mask Editor.

The Mask Editor dialog box contains a set of tabbed panes, each of which enables you define a
feature of the mask. These tabs are:

* “Parameters & Dialog Pane” on page 18-2: To design mask dialog boxes.

* “Code Pane” on page 18-16: To initialize a masked block using MATLAB code.

* “Icon Pane” on page 18-19: To create block mask icons.

* “Constraints” on page 18-27: To create constraints.

Note For information on creating and editing a block mask from command line, see “Control Masks
Programmatically”.

Parameters & Dialog Pane

* “Controls” on page 18-4

Mask Editor Overview

* “Dialog box” on page 18-9

* “Property editor” on page 18-10

* “Documentation Pane” on page 18-14

* “Type” on page 18-15

* “Description” on page 18-15

* “Help” on page 18-15

e “Provide a URL’ on page 18-15

* “Provide a web Command” on page 18-15

* “Provide an eval Command” on page 18-15

* “Provide Literal or HTML Text” on page 18-16

The Parameters & Dialog pane enables you to design mask dialog boxes using the dialog controls in
the Parameters, Display, and Action palettes.

MASK EDITOR PARAMETERS & DIALOG

— Vicut = -
| @t 253
Save Mask | Delete = Copy Documentation | Preview Dialog
SAVE ACTION DOCUMENTATION PREVIEW Y
Controls o Parameters & Dialog Code Icon Constraints o Property Editor [v]
= ~ PROPERTIES -
r— Q= Egl Type Prompt Name B i |
- %<MaskType> DescGroupVar Name Parameter1
RARANEIER A 36<MaskDescription> DescTextVar Alias
= - Value 0
[1z3] | W = Parameters FarameterGroupVar 5
Edit Check Box Popup = #1 N Parametert LO¥DE
e Type edit
[® - ATTRIBUTES
E B B
Combo List Box Radio Evaluaie Ei
Box Button Tunable on
o 1 oF Read only O
12 >t x 2 =
Slider Dial Spinner Hidden = I:_l
Never save O
: I |§.'. FFH Constraint
Unit Text Area Custom ~ DIALOG
Table Enable [+
["] < > Visile [
Data Type Min Max Callback
Tooltip
= — e =
=5 B - - LAYOUT
Row Locat... | new -
14 bl

The Parameters & Dialog pane divided into these sections:

18-3

18 Simulink Mask Editor

Parameter & Dialog Pane

Section

Section Description

Sub-Section

Sub-Section Description

“Controls” on page 18-
4

Parameters are
elements in a mask
dialog box that users
can interact with to add
or manipulate data.

Parameter

Parameters are user inputs that
take part in simulation. The
Parameters palette has a set of
parameter dialog controls that
you can add to a mask dialog
box.

Container

Display

Controls on the Display palette
allow you to group dialog
controls in the mask dialog box
and display text and images

Action

Action controls allow you to
perform some actions in the
mask dialog box. For example,
you can click a hyperlink or a
button in the mask dialog box.

“Dialog box” on page

You can click or drag
and drop dialog controls
from the palettes to the

NA

NA

185 Dialog box to create a
mask dialog box.
The Property editor Defines basic information on all
allows you to view and |Properties dialog controls, such as Name,
set the properties for Value, Prompt, and Type.
the I’larameter§, Defines how a mask dialog
. Display, Container, | xi1ijtes control is interpreted. Attributes
“Property editor” on |and Action controls. are related only to parameters.
age 18-10
e Defines how dialog controls are
Dialog displayed in the mask dialog
box.
Lavout Defines how dialog controls are
Y laid out on the mask dialog box.
Controls

The controls section is sub divided into Parameters, Display, and Action sections. The Controls Table
lists the different controls and their description.

18-4

Mask Editor Overview

Controls Table

Controls

Description

Parameters

Edit

Allows you to enter a parameter
value by typing it into the field.

You can associate constraints to
an Edit parameter.

Check box

Accepts a Boolean value.

Popup

Allows you to select a parameter
value from a list of possible
values. When you select the
Evaluate check box, the
associated variable holds the
index of the selected item. Note
that the index starts from 1, and
not 0. When Evaluate is
disabled, the associated variable
holds the string of the selected
item.

Combo box

Allows you to select a parameter
value from a list of possible
values. You can also type a value
either from the list or from
outside of the list. When you
select the Evaluate check box,
the associated variable holds the
actual value of the selected item.

You can associate constraints to a
Combo box parameter.

For more information, see the
Combo box example in
slexMaskParameterOptionsExam
ple.

Listbox

Allows you to create a list of
parameter values. All options of
possible values are displayed on
the mask dialog box. You can
select multiple values from it.

Radio button

Allows you to select a parameter
value from a list of possible
values. All options for a radio
button are displayed on the mask
dialog.

18-5

18 Simulink Mask Editor

Controls

Description

m'y

Slider

Allows you to slide to values
within a range defined by
minimum and maximum values. A
Slider parameter can accept
input as a number or a variable
name. If the specified variable is
a base workspace or a model
workspace variable, you can tune
the variable value through the
Slider.

You can tune the values in the
linear scale or logarithmic scale
using the Scale drop-down menu

You can also control the slider
range dynamically. For more
information, see
slexMaskParameterOptionsExam
ple.

Note Values specified for Slider
are auto applied.

Dial

Allows you to dial to wvalues
within a range defined by
minimum and maximum values. A
Dial parameter can accept input
as a number or a variable name.
If the specified variable is a base
workspace or a model workspace
variable, you can tune the
variable value through the Dial.
You can tune the values in the
linear scale or logarithmic scale
using the Scale drop-down
menu.

You can also control the dial
range dynamically. For more
information, see
slexMaskParameterOptionsExam
ple.

Note Values specified for Dial
are auto applied.

18-6

Mask Editor Overview

Controls

Description

Spinbox

Allows you to spin through values
within a range defined by
minimum and maximum values.
You can specify a step size for the
values.

Note Values specified for
Spinbox are auto applied.

L

DataType

Enables you to specify a data
type for a mask parameter. You
can associate the Min, Max, and
Edit parameters with a data type
parameter. For more details, see
“Specify Data Types Using
DataTypeStr Parameter” on page
18-33.

Min

Specifies a minimum value for
the DataTypeStr parameter.

Max

Specifies a maximum value for
the DataTypeStr parameter.

Unit

Allows you to set the
measurement units for output or
input values of a masked block.
The Unit parameter can accept
any units of measurement as
input. For example, rad/sec for
angular velocity, meters/sec? for
acceleration, or distance in km or
m. For more information, see
slexMaskParameterOptionsExam
ple.

Custom Table

Allows you to add tables in the
mask dialog box. You can add
values as a nested cell array in
the Values section of the
Property editor. For more
information , see
slexMaskParameterOptionsExam
ple.

18-7

18 Simulink Mask Editor

Controls

Description

Promote One-to-One

Allows you to selectively promote
block parameters from
underlying blocks to the mask.
Click the Promote One-to-One
to open the Promoted
Parameter Selector dialog box.
In this dialog box, you can select
the block parameters that you
want to promote. Click OK to
close it.

Promote Many-to-One

Allows you to promote all
underlying block parameters to
the mask. When you promote all
parameters, the promote
operation deletes parameters
that have been promoted
previously.

Container

|

Group box

Container to group other dialog
controls and containers in the
mask dialog box.

Tab

Tab to group dialog controls in
the mask dialog box. A tab is
contained within a tab container.
A tab container can have multiple
tabs.

Table

Container to group the Edit,
Check box, and the Popup
parameters in a tabular form. You
can also search and sort the
content listed within the Table
container.

For more information, see the
Tables example in Dialog Layout
Options and “Handling Large
Number of Mask Parameters”.

Collapsible Panel

Container to group dialog
controls similar to Panel. You
can choose to expand or collapse
the CollapsiblePanel dialog
controls.

For more information, see the
Collapsible Panel example in
Dialog Layout Options.

18-8

Mask Editor Overview

Controls Description

Container to group of dialog

-------- Panel controls. You use a Panel for

"""" logical grouping of dialog
controls.

Display

A Text Text displayed in the mask dialog
box.

= Image displayed in the mask

&l R dialog box.

= Text Area Add a custom text or MATLAB

code in the mask dialog box.

Listbox Control

Allows you to select a value from
a list of possible values. You can
select multiple values (Ctrl +
click).

Tree Control

Allows you to select a value from
a hierarchical tree of possible
values. You can select multiple
values (Ctrl + click).

Lookup Table Control

Allows you to visualize n-
dimensional table and breakpoint
data

Action

Hyperlink

Hyperlink text displayed on the
mask dialog box.

Button

Button controls on the mask
dialog box. You can program
button for specific actions. You
can also add an image on a
button controls. For more
information, see
slexMaskParameterOptionsExam
ple.

Dialog box

You can build a hierarchy of dialog controls by dragging them from a Controls section to the
Parameters and Dialog tab. You can also click the palettes on the Controls section to add the
required control to the Parameters and Dialog tab. You can add a maximum of 32 levels of
hierarchy in the Parameters and Dialog tab.

The Parameters and Dialog displays three fields: Type, Prompt, and Name.

* The Type field shows the type of the dialog control and it cannot be edited. It also displays a
sequence number for parameter dialog controls.

* The Prompt field shows the prompt text for the dialog control.

18-9

18 Simulink Mask Editor

18-10

* The Name field is auto-populated and uniquely identifies the dialog controls. You can choose to
add a different value (valid MATLAB name) in the Name field and must not match the built-in
parameter name.

The Parameter controls are displayed in light blue background whereas the Display and Action
controls are displayed in white background on the Dialog box.

You can move a dialog control in the hierarchy, you can copy and paste a dialog control, you can also
delete a node. For more information, see “Dialog Control Operations” on page 18-30.

Property editor

The Property editor allows you to view and set the properties for Parameter, Display, Container,
and Action dialog controls. The Property editor for Parameter is shown:

Property Editor
~ PROPERTIES

Name Parameter1

Alias

Value

Prompt

Type textarea

Text Type Plain Text
~ ATTRIBUTES

Evaluate

Tunable off

Read only
Hidden
Never save

~ DIALOG
Enable
Visible
Callback
Tooltip

+ LAYOUT

C1{0)0

NIRI

Row Location new
Horizontal Stretch @

You can set the following properties for Parameter, Action, and Display dialog controls. For more
information, see the Property editor table.

Mask Editor Overview

Property editor

Property Description
Properties
Name Uniquely identifies the dialog control in the mask dialog box. The
Name property must be set for all dialog controls.
Value Value of the Parameter. The Value property applies only to the
Parameter dialog controls.
Label text that identifies the parameters in a mask dialog box. The
Prompt Prompt property applies to all dialog controls except Panel and
Image dialog control.
Type of the dialog control. You can use the Type field to change
Type the Parameter and Container types. You cannot change any
container type to Tab and vice versa.
Expand Allows you to specify if the collapsible panel dialog control is

expanded or collapsed, by default.

Type options

The Type options property allows you to set specific Parameter
properties. The Type options property applies to the Popup,
Radio button, DataTypeStr, and Promoted parameters.

You can add an image to a mask using the Image dialog control.
You can also display an image on a Button dialog control. In
either case, provide the path to the image in the File path
property that is enabled for these two dialog controls. For the
Button dialog control, specify an empty character vector for the

Fil h
tle pat Prompt property in order for the image to be displayed.
Note that, when you provide the filepath, do not use the quote
marks (' '). For example, if you want to add an image, provide the
filepath as : C:\Users\User1l\Image Repositort\motor.png
Word wrap The Word wrap property enables word wrapping for long text.

The Word wrap property applies only for Text dialog control.

Maximum and Minimum

The Maximum and Minimum properties enable you to specify a
range for controls like Spinbox, Slider, and Dial.

Step size

Allows you to specify a step size for the values. This property
applies only for Spinbox dialog control.

Tooltip

Allows you to specify a tooltip for the selected dialog control type.
The tooltip is visible when you hover the cursor over a dialog
control on the mask dialog box. You can add tooltips for all dialog
controls type except for Group box, Tab, CollapsiblePanel, and
Panel.

Scale

Allows you to set the tuning scale as Linear or log for Slider
and Dial dialog controls.

Table Parameter

Specify table data for the Lookup Table parameter.

Table Unit

Specify units for the table data.

Table Display Name

Specify display name for the Lookup Tablecontrol.

18-11

18 Simulink Mask Editor

18-12

Property

Description

Breakpoint Parameters

Specify breakpoint parameters for the Lookup Tablecontrol. For
example, {'torque', 'engine speed'}

Breakpoint Units

Specify the units for breakpoint parameters. For example,
{lel , |rpm|}

Data Specification

You can specify data for table and breakpoint parameters by
explicitly specifying the values in the parameters or through a
data object

Lookup Table Object

Specify the name of the data object for the table and breakpoint
parameters values

Text Type

Specify the type of text for the Text Area parameter. It can accept
Plain Text, HTML Text, and MATLAB code. The Text Area
parameter has the capability to process the HTML code and
display the output in the mask dialog. Similarly, it can process the
MATLAB code and display the output.

Attributes

Evaluate

If you enter a MATLAB expression as a mask parameter input,
Simulink handles the entry in one of two ways:

1 If the Evaluate option is selected, Simulink evaluates the
expression and uses the final result of the calculation. To
complete a successful evaluation, the variables of the
expression must be initialized in the model or base
workspace. For example, 'a + b' evaluates to 11 if the
variables a and b hold the values 2 and 9, respectively.

2 Ifthe Evaluate option is not selected, Simulink takes a literal
reading of the input entry as you type it in the mask
parameter dialog box. For example, 'a + b'isread as a + b.

The Evaluate option is selected by default for the Edit, Check
Box and Popup mask parameters.

Mask Editor Overview

Property

Description

Tunable

By default, you can change a mask parameter value during
simulation. To prevent the changing of parameter value during
simulation, clear the Tunable option. If the masked parameter
does not support parameter tuning, Simulink ignores the Tunable
option setting of a mask parameter. Such parameters are then
disabled on the Mask dialog box when simulating. The available
modes in Tunable are:

* off - you cannot change mask parameter values during
simulation while in this mode.

* on - you can change the mask parameter value during
simulation. Each time you make a change the model is
compiled.

* run-to-run - you can change the mask parameter value during
simulation but the model is not recompiled when you change
any mask parameter value. While simulating elaborate models,
this mode helps in reducing the model compilation time when
simulated in fast restart.

You can also change the mask parameter value while simulating
your model on fast restart mode. Depending on the value
specified for the Tunable attribute and the simulation mode, the
mask parameter can either be read-only or read-write.

off on run-to-run

Normal read-only read-write

Fast Restart read-only read-write read-write

For information about parameter tuning and the blocks that
support it, see “Tune and Experiment with Block Parameter
Values”.

Read only

Indicates that the parameter cannot be modified.

Hidden

Indicates that the parameter must not be displayed in the mask
dialog box.

Never save

Indicates that the parameter value never gets saved in the model
file.

Constraint

Allows you to add constraints to the selected parameter.

Dialog box

Enable

By default Enable is selected. If you clear this option, the
selected control becomes unavailable for edit. Masked block users
cannot set the value of the parameter.

Visible

The selected control appears in the mask dialog box only if this
option is selected.

Callback

MATLAB code that you want Simulink to execute when a user
applies a change to the selected control. Simulink uses a
temporary workspace to execute the callback code.

18-13

18 Simulink Mask Editor

Property

Description

Layout

Item location

Allows you to set the location for the dialog control to appear in
the current row or a new row.

Align Prompts

Allows you to align the parameters on the mask dialog box. This
option is supported for all the Display control types except Table.

For more information, see Combo box Parameter.

Prompt location

Allows you to set the prompt location for the dialog control on
either the top or to the left of the dialog control.

You cannot set the Prompt location property for Check box,
Dial, DataTypeStr, Collapsible Panel and Radiobutton.

Orientation

Allows you to specify horizontal or vertical orientation for sliders
and radio buttons.

Horizontal Stretch

If this option is selected, the controls on the mask dialog box
stretch horizontally when you resize the mask dialog box. By
default, Horizontal Stretch check box is selected.

For more information, see Horizontal Stretch Property.

Documentation Pane

The Documentation pane enables you to define or modify the type, description, and help text for a

masked block.

Documentation

r Type

r Description

r Help

18-14

Mask Editor Overview

Type

The mask type is a block classification that appears in the mask dialog box and on all Mask Editor
panes for the block. When Simulink displays a mask dialog box, it suffixes (mask) to the mask type.
To define the mask type, enter it in the Type field. The text can contain any valid MATLAB character,
but cannot contain line breaks.

Description

The mask description is summary help text that describe the block's purpose or function. By default,
the mask description is displayed below the mask type in the mask dialog box. To define the mask
description, enter it in the Description field. The text can contain any legal MATLAB character.
Simulink automatically wraps long lines. You can force line breaks by using the Enter key.

Help

The Online Help for a masked block provides information in addition to that provided by the Type and
Description fields. This information appears in a separate window when the masked block user
clicks the Help button on the mask dialog box. To define the mask help, type one of these in the Help
field:

» URL specification
* web or eval command
o Literal or HTML text

Provide a URL

If the first line of the Help field is a URL, Simulink passes the URL to your default web browser. The
URL can begin with https:, www:, file:, ftp:, ormailto:. Examples:

https://www.mathworks.com
file:///c:/mydir/helpdoc.html

Once the browser is active, MATLAB and Simulink have no further control over its actions.
Provide a web Command

If the first line of the Help field is a web command, Simulink passes the command to MATLAB, which
displays the specified file in the MATLAB Online Help browser. Example:

web([docroot '/MyBlockDoc/' get param(gcb, 'MaskType') '.html'])

See the MATLAB web command documentation for details. A web command used for mask help
cannot return values.

Provide an eval Command

If the first line of the Help field is an eval command, Simulink passes the command to MATLAB,
which performs the specified evaluation. Example:

eval('open My Spec.doc')

See MATLAB eval command documentation for details. An eval command used for mask help
cannot return values.

18-15

18 Simulink Mask Editor

Provide Literal or HTML Text

If the first line of the Help field is not a URL, or a web or an eval command, Simulink displays the
text in the MATLAB Online Help browser under a heading that is the value of the Mask type field.
The text can contain any legal MATLAB character, line breaks, and any standard HTML tag, including
tags like img that display images.

Simulink first copies the text to a temporary folder, then displays the text using the web command. If
you want the text to display an image, you can provide a URL path to the image file, or you can place
the image file in the temporary folder. Use tempdir to find the temporary folder that Simulink uses
for your system.

Code Pane

» “Dialog variables” on page 18-17

* “Initialization commands” on page 18-17

* “Rules for Initialization commands” on page 18-17

* “Allow library block to modify its contents” on page 18-18

* “Mask Parameter Callback” on page 18-18

The Code pane gives you an integrated view of block initialization and parameter callback code. The

Mask Editor code functionalities are like those in the MATLAB Editor, with some limitations. For
example, the autocomplete functionality is supported, but you cannot set a breakpoint in your code.

MASK EDITOR

o b @ .
) 8 @ «
Save Mask | Evaluate Block = Preview Dialog | Help Tutorial
SAVE | EVALUATION PREVIEW RESOURCES
Code Browser Parameters & Dialog Code lcon Constraints

Search

D Allow library blocks 1o modify its contents

Initialization & Callbacks

% Initialization code section @

Initialization B - s T
2 Function initialization()

~ Parameters
Parameter1

(2] abe

F[F[F[F[F[F[F[F[F[F|F[F[F[FF[F]2

4 end

= xyz % Parameter callback section

= VariantControl
8 % Callback for Parameterl

o] function Parameterl_callback()

=1 VariantActivationTime

= SystemSampleTime

= ShowPortLabels 11 Y end

= RTWMemSecFuncinitTerm

= RTWMemSecFuncExecute

= RTWMemSecDataParameters

= RTWMemSecDatalnternal

@ RTWMemSecDataConstants

<

PropagateVariantConditions

= PartitionName
@ Latency
= LabelModeActiveChoice

| AutoFrameSizeCalculation

< AllowZeroVariantControls

When you open a model, Simulink locates the visible masked blocks that reside at the top level of the
model or in an open subsystem. Simulink only executes the initialization commands for these visible
masked blocks if they meet either of the following conditions:

18-16

Mask Editor Overview

* The masked block has icon drawing commands.

Note Simulink does not initialize masked blocks that do not have icon drawing commands, even if
they have initialization commands.

» The masked block belongs to a library and has the Allow library block to modify its contents
enabled.

Initialization commands for all masked blocks in a model run when you:

* Update the diagram

» Start simulation

* Start code generation

* Click Apply on the dialog box

Initialization commands for an individual masked block run when you:

* Change any of the mask parameters that define the mask, such as MaskDisplay and
MaskInitialization, by using the Mask Editor or the set param command.

* Rotate or flip the masked block, if the icon depends on the initialization commands.

* Cause the icon to be drawn or redrawn, and the icon drawing depends on initialization code.

* Change the value of a mask parameter by using the block dialog box or the set param command.

* Copy the masked block within the same model or between different models.
The Code pane contains the controls described in this section.
Dialog variables

The Dialog variables list displays the names of the dialog controls and associated mask parameters,
which are defined in the Parameters & Dialog pane. You can also use the list to change the names
of mask parameters. To change a name, double-click the name in the list. An edit field containing the
existing name appears. Edit the existing name and click Enter or click outside the edit field to
confirm your changes.

Initialization commands

Enter the initialization commands in this field. You can enter any valid MATLAB expression,
consisting of MATLAB functions and scripts, operators, and variables defined in the mask workspace.
Initialization commands run in the mask workspace, not the base workspace.

Rules for Initialization commands

Following rules apply for mask initialization commands:

* Do not use initialization code to create mask dialogs whose appearance or control settings change
depending on changes made to other control settings. Instead, use the mask callbacks provided
specifically for this purpose.

* Avoid prefacing variable names in initialization commands with MaskParam L and
MaskParam M . These specific prefixes are reserved for use with internal variable names.

18-17

18 Simulink Mask Editor

* Avoid using set param commands to set parameters of blocks residing in masked subsystems
that reside in the masked subsystem being initialized. See “Set Up Nested Masked Block
Parameters” for details.

Allow library block to modify its contents

This check box is enabled only if the masked block resides in a library. Selecting this option allows
you to modify the parameters of the masked block. If the masked block is a masked subsystem, this
option allows you to add or delete blocks and set the parameters of the blocks within that subsystem.
If this option is not selected, an error is generated when a masked library block tries to modify its
contents in any way.

Mask Parameter Callback

The Code pane provides you an integrated view of the mask initialization code and the mask callback
code. To add parameter callback code, click on the plus button next to the parameter from the
Parameter list, the skeleton for the callback code appears. Enter MATLAB commands for the
callback.

MASK EDITOR CODE

%,

SAVE

Save Mask

I8 l% @ =

Evaluate Block = Preview Dialog | Help Tutorial

EVALUATION PREVIEW RESOURCES

Code Browser

Search

Initialization & Callbacks

SystemSampleTime

- ShowPortLabels

9
10
11

= RTWMemSecFunclnitTerm

12
13

= RTWMemSecFuncExecute

= RTWMemSecDataParameters

= RTWMemSecDatalnternal

14
15
16

= RTWMemSecDataConstants

PropagateVariantConditions

= PartiionName

i Latency

i LabelModeActiveChoice

AutoFrameSizeCalculation

AllowZeroVariantControls

FF (| F ([F [S@ [H [

Parameters & Dialog Code lcon Constraints

[CJAllow library blocks to modify its contents

Initialization 1 % Initialization code section
2 function initialization()
» Parameters .
[E' Parameter1 a end
[s] abc 5
= XyzZ 6 % Parameter callback section
7
= \ariantControl -
8 % Callback for VariantControl
[=! VariantActivationTime

function VariantControl_callback()
end

% Callback for VariantActivationTime
function VariantActivationTime_callback()

endl

18-18

Mask Editor Overview

MASK EDITOR
W | 400) = =] =
| 2 2 [Smart Guides [] Grid 15) =)
Save Mask Graphical & [Rulers Layout | Ports Simulink Preview
- H: | 168 s * Properties | in Model
SAVE AUTHORING MODE ANVAS IRAWING AIDS] VIEW | CONFIGURATION | PREVIEW
Tools Parameters & Dialog Code Constraints lcon (Subsystem) Element Browser
Search Q) = e iy i i i ke ¥ R 1 B B F%] = Subsystem
@ of' rect_10
GENERAL W D(&
A A e w @ of line_16
=& (| O @ o rect_18
Select Rect Ellipse @ of line_19
L} @ o text_20
v @ of text_21 -
/ an P _
@ - Properties
Line Path Curvature
« Transform
Text
TI N Position
Text Iu.naqc- Equation Rotation
A Corner
Radius
! = B -
+
\;cdé ’r ((,,{‘l}t.,, Text » Presets/Quick Styles
Text Parameterization
BASIC Dynamic Text Editing Behavior
e and sefup the
JAN = L
Triangle Cylinder Axis
Edit Handler:
A\J Reset
Sine Wave s
- Layout Constraints
X:17 Y. -63 Zoom: | 100% - b

Icon Pane

* “Graphical Icon Editor” on page 18-19
* “Mask Icon Drawing Commands” on page 18-20

The Icon pane helps you to create a block icon that contains descriptive text, state equations, image,
and graphics. You can author block icon using either Graphical Editor or Mask Drawing Commands.

Graphical Icon Editor

Graphical Editor: You can create and edit the mask icon of a block through a graphical environment.
The various features in Graphical Icon Editor helps you to create icons with ease. Launch Graphical

Icon Editor from Mask Editor.

* Interactive graphical environment: Use graphical tools like pen, curvature, text, scissor,
connector, and equation (which supports LaTeX) to create rich graphical icons. Grids, smart
guides, and rulers help you to create pixel-perfect icons. Apart from the drawing tools, a few built-
in shapes, such as Resistor, Inductor, and Rotational Damper, are readily available

* Element browser: Element browser lists all the elements in the icon.

* Hide or unhide an element in the icon.

* Lock or unlock an element so that you do not accidentally change the shape or position of an
element while working on other elements of the icon.

* Name each element in the icon for easy identification.

* Port binding/unbinding: The number of ports on each block is pre-defined if you are creating or
modifying the block using block context. For example, the number of ports for Simscape blocks or

18-19

18 Simulink Mask Editor

Aerospace blocks are pre-defined and they appear on the block icon. You can also define the
number of ports on the block icon if you are creating or modifying a block without a block context.

Conditional visibility: Hide or unhide an element of the block based on the block parameters or
mask parameters.

Preview options: Preview the icon in Simulink using preview options such as horizontal stretch,
flip, or scale. You can also preview the icons with modified block parameters.

Display elements that fit the size of the icon: The first-fit feature helps you to display only the
elements that fit in the size of the icon when you resize the block.

Position elements relatively: The auto layout constraint feature helps you to position each
element relative to other elements on the canvas.

Text Parameterization: You can view the evaluated value of a block parameter or mask
parameter on the block icon. Enter the block parameter name or a placeholder in Parameter/Value
that will return the text or value during runtime. To see the evaluated value of a block parameter
on the block icon, preview the icon on Simulink canvas.

To know more about Graphical Icon Editor, see “Create and Edit Masked Block Icon Using Graphical
Icon Editor”

Mask Icon Drawing Commands

Mask editor provides you the skeleton for each of the drawing commands. You can set an image for
the mask icon. Click Add Image to import an image.

MASK EDITOR ICON @l e s e
=
PJ,,;J L
Save Mask Drawing
Lommandas v
i AUTHORING MOD IMAGE
Drawing Commands Parameters & Dialog Code Constraints Icon Property Editor
Q =133 | 1 patch([@ 10 20 38 30], [10 3@ 28 25 18 18], [1 o 0]); @ | 7 FROPERTES
ICON DRAWING COMMANDS port_label('output’, 1, 'xy'); Block Frame | Visible
| leon Transp... Opaque
. Yout lcon Units | Autoscale
ot pat disp lcon Rotation | Fixed

Port Rotation | Default

= Run Initializ... |Off
label image
block_ico.. droot
Preview

fprintf()

No Freview Available

18-20

The Mask Icon Drawing Commands pane is divided into these sections:

Mask Editor Overview

* “Properties” on page 18-21: Provides a list of different controls that can be applied on the mask
icon.

* “Preview” on page 18-25: Displays the preview of the block mask icon.

* “Icon drawing commands” on page 18-25: Enables you to draw mask icon by using MATLAB
code.

Note You can create static and dynamic block mask icon. For more information, see “Draw Mask
Icon” and slexMaskDisplayAndInitializationExample.

Properties

Properties available in the right pane are a list of controls that allow you to specify attributes on the
mask icon. These options are,

* “Block Frame” on page 18-21

* “Icon Transparency” on page 18-21

* “Icon Units” on page 18-22

* “Icon Rotation” on page 18-23

* “Port Rotation” on page 18-23

* “Run Initialization” on page 18-25

Block Frame

The block frame is the rectangle that encloses the block. You can choose to show or hide the frame by
setting the Block Frame parameter to Visible or Invisible. The default is to make the block
frame visible. For example, this figure shows visible and invisible block frames for an AND gate block.

(B)
—
—
Visible Invisible

Icon Transparency

The icon transparency can be set to Opaque, Opaque with ports, or Transparent, based on
whether you want to hide or show what is underneath the icon. The default option Opaque hides
information such as port labels. The block frame is displayed for a transparent icon, and hidden for
the opaque icon.

) -
— AND |——
—» PR

Opogue Transporent

For a subsystem block, if you set the icon transparency to Opaque with ports the port labels are
visible.

18-21

matlab: open_system([slexMaskDisplayAndInitializationExample']))

18 Simulink Mask Editor

18-22

¥ in1 Qut1 [
Subszystem Block
o inz Out? [

Cpaque with ports

Note

* For the Opaque option to hide the port labels, there must be an icon drawing command added in
the mask editor.

* Ifyou set the icon transparency to Transparent, Simulink does not hide the block frame even if
you set the Block Frame property to Invisible.

Icon Units

This option controls the coordinate system used by the drawing commands. It applies only to the
plot, text, and patch drawing commands. You can select from among these choices: Autoscale,
Normalized, and Pixel.

ma (X, man) 11 block width, blod: heighi
min (2, min() Q, 0,0
Autoscale Mormalized Pixel

* Autoscale scales the icon to fit the block frame. When the block is resized, the icon is also
resized. For example, this figure shows the icon drawn using these vectors:

X=1[023409]; Y=1[46358];

v

The lower-left corner of the block frame is (0,3) and the upper-right corner is (9,8). The range of
the x-axis is 9 (from 0 to 9), while the range of the y-axis is 5 (from 3 to 8).

* Normalized draws the icon within a block frame whose bottom-left corner is (0,0) and whose top-
right corner is (1,1). Only X and Y values from 0 through 1 appear. When the block is resized, the
icon is also resized. For example, this figure shows the icon drawn using these vectors:

X=1.06.2.3 .4 .9];Y=1_[.4.6 .3 .5.8];

A

* Pixel draws the icon with X and Y values expressed in pixels. The icon is not automatically
resized when the block is resized. To force the icon to resize with the block, define the drawing
commands in terms of the block size.

Mask Editor Overview

Icon Rotation

When the block is rotated or flipped, you can choose whether to rotate or flip the icon or to have it
remain fixed in its original orientation. The default is not to rotate the icon. The icon rotation is
consistent with block port rotation. This figure shows the results of choosing Fixed and Rotates
icon rotation when the AND gate block is rotated.

vy vy

D L
I !

Fixe Rotates

Port Rotation

This option enables you to specify a port rotation type for the masked block. The choices are:
+ default

Ports are reordered after a clockwise rotation to maintain a left-to-right port numbering order for
ports along the top and bottom of the block and a top-to-bottom port numbering order for ports
along the left and right sides of the block.

* physical
Ports rotate with the block without being reordered after a clockwise rotation.

The default rotation option is appropriate for control systems and other modeling applications where
block diagrams typically have a top-down and left-right orientation. It simplifies editing of diagrams,
by minimizing the need to reconnect blocks after rotations to preserve the standard orientation.

Similarly, the physical rotation option is appropriate for electronic, mechanical, hydraulic, and other
modeling applications where blocks represent physical components and lines represent physical
connections. The physical rotation option more closely models the behavior of the devices
represented (that is, the ports rotate with the block as they would on a physical device). In addition,
the option avoids introducing line crossings as the result of rotations, making diagrams easier to
read.

For example, the following figure shows two diagrams representing the same transistor circuit. In
one, the masked blocks representing transistors use default rotation and in the other, physical
rotation.

18-23

18 Simulink Mask Editor

MPM1
L—a
]

MPMZ

Default Rotation

MFM3

NPM4

Physical Rotation

Both diagrams avoid line crossings that make diagrams harder to read. The next figure shows the

diagrams after a single clockwise rotation.

NFM1

NPMNZ

Default Rotation

2
Y

}

]
PHP1 n/@\ PHF2 /@\
L

FMH

,1
* B
1_

1

FHP4 /@\

HFHZ /@\

L

MPME /@\

R

Physical Rotation

Note The rotation introduces a line crossing the diagram that uses default rotation but not in the
diagram that uses physical rotation. Also that there is no way to edit the diagram with default
rotation to remove the line crossing. See “Flip or Rotate Blocks” for more information.

18-24

Mask Editor Overview

Run Initialization

The Run initialization option enables you to control the execution of the mask initialization
commands. The choices are:

Off (Default): Does not execute the mask initialization commands. When the mask drawing
commands do not have dependency on the mask workspace, it is recommended to specify the
value of Run initialization as Off. Setting the value to Off helps in optimizing Simulink
performance as the mask initialization commands are not executed.

On: Executes the mask initialization commands if the mask workspace is not up-to-date. When this
option is specified, the mask initialization commands are executed before executing the mask
drawing commands irrespective of the mask workspace dependency of the mask drawing
commands.

Analyze: Executes the mask initialization commands only if there is mask workspace dependency.
When this option is specified, Simulink executes the mask initialization commands before
executing the mask icon drawing commands. The Analyze option is for backward compatibility
and is not recommended otherwise. It is recommended that the Simulink models from R2016b or
before are upgraded using the Upgrade Advisor.

For more information, see slexMaskDrawingExamples.

Preview

This section displays the preview of block mask icon. Block mask preview is available only if the mask
contains an icon drawing.

When you add an icon drawing command and click Apply, the preview image refreshes and is
displayed in the Preview section of Icon pane.

Icon drawing commands

Add code to the editor to draw a block icon. You can use the list of commands in the left pane to draw
a block icon.

18-25

18 Simulink Mask Editor

Mask icon drawing commands

Drawing Command Description Syntax Example Preview
color Change drawing color |[color('red');
of subsequent mask port label('output maxt
icon drawing commands|',1, 'Text")
disp Display text on the disp('Gain')
masked icon. =
dpoly Display transfer dpoly ([0 0 1], [1 3
function on masked icon|2 1], 'z') Z e
droots Display transfer droots([-1], [-2 =
function on masked icon|-3], 4) pomrives
fprintf Display variable text fprintf('Sum = .
centered on masked %d', 7) Sum =7
icon
image Display RGB image on |image('b747.jpg"')
masked icon
Note To add mask icon
image from the user
interface, click Mask >
Add Mask Icon in the
context menu. _
£
Add rnask icon image @
Description
Add and manage icon image to plock.
Select mask icon image:
Icon transparency: [Opaque 'l
’ OK] ’ Cancel] ’ Help]
patch Draw color patch of patch([0 10 20 30
specified shape on 30 0], [10 30 20 ‘
masked icon 25 10 101,[1 6 01])
plot Draw graph connecting [plot([10 20 30 k]
series of points on 40], [10 20 10 f/\/
masked icon 15]))
port label Draw port label on port label('output
masked icon ", 1, 'xy') il

18-26

Mask Editor Overview

Drawing Command Description Syntax Example Preview
text Display text at specific |[text(5,10, 'Gain')

location on masked e

icon . -

You must select Pixels
in the Icon units box.

block icon Promote icon of a block | block icon(BlockNa

contained in a me)
Subsystem to the |
Here, the icon of block

Subsystem mask

is promoted to its
Subsystem block.

For more information,
see
slexMaskDrawingExam
ples.

Note Simulink does not support mask drawing commands within anonymous functions.

The drawing commands execute in the same sequence as they are added in the text box. Drawing
commands have access to all variables in the mask workspace. If any drawing command cannot

successfully execute, the block icon displays question marks [,
The drawing commands execute after the block is drawn in these cases:

* Changes are made and applied in the mask dialog box.
* Changes are made in the Mask Editor.

* Changes are done to the block diagram that affects the block appearance, such as rotating the
block.

Constraints

Mask parameter constraints help you to create validations on a mask parameter without having to
write your own validation code. There are three types of constraints, Parameter Constraint, Cross

18-27

18 Simulink Mask Editor

MASK EDITOR

A

SAVE

Save Mask

Parameter Constraints, and Port Constraints.

CONSTRAINTS Toc o

vt B =] O o 5

Load New Parameter Cross Port " | Port Identifiers | Preview Dialog
Parameter

MAT FILE ADD CONSTRAINTS PORT IDENTIFIERS PREVIEW

Constraint Browser Parameters & Dialog Code Constraints Icon
Search

T Type Use this pane to create parameter constraints and associate them with edit parameters. If multiple attributes are
! selected from a rule category, the parameter value must satisfy at least one attribute from each category.
~ 8 Mask Constraints
B delta I@ Constraint Name: | delta
B torque Cross Par...
) Gain_input Port — Rule I,\\
| i s
Data Types [v| numeric
Complexity [Ireal []complex
Dimension []scalar [_|row vector [column vector || 2-D matrix [_| n-D matrix
Sign [Jpositive [] negative [| zero
Finiteness [Ifinite [_Jinf [_]-inf [Inan
Fraction [Jinteger [] decimal
Range [Minimum | [Maximum
Custom Rule
MATLAB Expression Enter a valid logical MATLAB expression 0

18-28

Parameter Constraint: A mask can contain parameters that accept user input values. You can
provide input values for mask parameters using the mask dialog box. Constraints ensure that the
input for the mask parameter is within a specified range. For example, consider a masked Gain block.
You can set a constraint where the input value must be between 1 and 10. If you provide an input that
is outside the specified range, an error displays. Constraint Browser on the left pane helps you to
manage Shared Constraints.

Cross Parameter Constraint: Cross-parameter constraints are applied among two or more Edit or
Combobox type mask parameters. You can use a cross parameter constraint when you want to
specify scenarios such as, Parameterl must be greater than Parameter2.

Port Constraint: You can specify constraints on the input and output ports of a masked block. The
port attributes are checked against the constraints when you compile the model.

Additional Options

Following buttons appear on the Mask Editor:

* Save Mask applies the mask settings and leaves the Mask Editor open.
* The Preview Dialog applies the changes you made, and opens the mask dialog box.

* The Delete Mask deletes the mask and closes the Mask Editor. To create the mask again, select
the block and on the Block tab, in the Mask group, click Create Mask.

Mask Editor Overview

* Copy Mask copies the mask definitions from Simulink library blocks. Search for the desired block
and click Copy Mask to import the mask definition from an existing block.

« Evaluate Block evaluates the callback and initialization code.
See Also

More About

. “Masking Fundamentals”

. “Create a Simple Mask”

. “Create Block Masks”

. Creating a Mask: Parameters and Dialog Pane

18-29

https://www.mathworks.com/videos/creating-a-mask-parameters-and-dialog-pane-120638.html

18 Simulink Mask Editor

Dialog Control Operations

In this section...

“Moving dialog controls in the Dialog box” on page 18-30
“Cut, Copy, and Paste Controls” on page 18-30
“Delete nodes” on page 18-31

“Error Display” on page 18-31

Moving dialog controls in the Dialog box

You can move dialog controls up and down in the hierarchy using drag and drop. When you drag a
control, a cue line indicates the level in the hierarchy. Based on the type of dialog control, you can
drag and drop controls as indicated:

* Drag and drop on the container dialog control in the Dialog box

* Drop before it: Adds the dialog control as a sibling before the current dialog control.

= g groupbox >

* Drop on it: Adds to the container as a child at the end.

* Drop after it: Adds the dialog control as a sibling after the current dialog control.

* Drag and drop on the non-container dialog control in the Dialog box

* Drop before it: Adds the dialog control before the current dialog control.

- [31 edit
C Lk
‘e checkbox

* Drop after it: Adds the dialog control after the current dialog control.

4 checkbox

* Drag and drop into Dialog box blank area

* The element is added to the root level node.

Cut, Copy, and Paste Controls

You can cut, copy, and paste dialog controls on the Dialog box using the context menu.

18-30

Dialog Control Operations

éj popup Gair :f' Cut — CreleX G otion 24
[s] DataTypeStr Data Param "2 Copy Ctri+C Leters #5
L] Minimum Min2 B Paste Ctrl+V heters #6

Delete nodes

Right-click the control that you want to delete in the Dialog box. Select, L3RS from the

context menu. For example, to delete a Check box dialog control, right-click and select Delete:

4 Cut Ctril+X
53 Copy Cirl+C
E Paste Ctrl+V

> Delete

You can also use the Delete menu option to delete a dialog control.

Error Display

If you have errors in parameters names, such as, duplicate, invalid parameter names, or empty
names, the mask editor displays the parameter names in red outline. When you edit the parameters
to fix errors, the modified fields are identified by a yellow background.

Parameter2 = Error: Duplicate
Pararneter2 #3 parameter
names
Multiplication #4
Edited
Parameterd #5 parameters to fix
Parameters #6 Eerrors

18-31

18 Simulink Mask Editor

18-32

Dialog box
Type Prompt Mame
=1 %o MaskTypes DescGroupVar
A %< MaskDescription> DescTextVar
= 51 ParameterGroupVar
-[30] #1 edit pararmeter |Parameter1 2 |
-[E1] #2 edit parameter W
-[3T] #3 edit parameter a
- A text control A 3
{9 hyperlink contrel control3 4
(:9 hyperlink control Control3
-{31] #4 edit parameter b 3b
(:9 hyperlink control Ih—l
=N G2 Centained .
Ej #5 ﬂ Errors |E|
_I 6 Following names are duplicate:
Drag of & Parameterl
Use De & parameterl
b

Duplicate Parameter, Display, and Action control names are not allowed.

Parameter names must be unique and are case insensitive. Names varying only in lowercase and
uppercase letters, are treated as duplicates. For example, Parameterl and parameterl are not
allowed.

3 Parameter, Display, and Action control names can be same as long as different lowercase and

uppercase characters are used. For example, while a and A are allowed, b and b are not allowed.

4 Action and Display control names are case-sensitive. For example, while Control3 and

control3 are allowed, control3 and control3 are not allowed.

See Also
“Create Block Masks”

Specify Data Types Using DataTypeStr Parameter

Specify Data Types Using DataTypeStr Parameter

Similar to any mask parameter, the DataType parameter can be added on a mask dialog box from the
Mask Editor. Adding the DataType parameter to the mask dialog box allows the end user of the block
to specify the acceptable data types for the associated Edit type parameter. While defining the mask,
you can specify single or multiple data types for the Edit parameter. The end user of the block can
select from one of these data types. Specifying a data type for the Edit parameter defines a rule for
the input value that can be provided through the mask dialog box.

The DataType parameter also allows you to specify a minimum and maximum value for the Edit

parameter. You can do so by using the Min and Max mask parameters and associating these

parameters to the DataType parameter. DataType parameter can be used to do fixed-point analysis.

Associate Data Types to Edit Parameter

1 Open the model in which you want to mask a block. For example, open the DataTypeStr model
in Mask Parameters.
2 Select the Subsystem block on the Subsystem Block tab, in the Mask group, click Create
Mask.
Note If you are editing an existing mask, to open the Mask Editor, on the Subsystem Block tab,
in the Mask group, click Edit Mask.
3 Inthe Mask Editor, click the Parameters & Dialog pane and add the Edit, Min, Max, DataType
parameters.
MASK EDITOR (RTINS e Te's S5 c @
. 5 B
Save Mask | Delete ' Copy Documentation | Preview Dialog
[Pasts
SAVE ACTION DOCUMENTATION PREVIEW
Controls Parameters & Dialog Code Icon Constraints Property Editor
S = [ma| |TvPe Prompt Name ~ PROPERTIES
Search O\J = |uu|
o T —A - %=MaskType= DescGroupVar MName ParameterGroupVar
Slidar Dial Spinner A %<MaskDescription= DescTexiVar Prompt Parameters
- Parameters ParameterGroupVar Type group
I =! J =l #1 Gain Parameter1 ~ DIALOG
Unit Tet Area Custom #2 Output Min Parameter2 Enable
Table #3 Output Max Parameter3 Visiole
|:',,']* [2] #4 Output data type Parameterd - LAYOUT
Data Type Min Max Row Location |new
Align Prompts O
= I:I']
SlN=!
Fromote Promote
One-to-.. Many-to-.
CONTAINER
1 |=|_' -
14 4|

18-33

18 Simulink Mask Editor

18-34

To specify data types for the Edit parameter, select DataType in the Dialog box section of the
Mask Editor and click the button next to Type options in the Property editor pane. The Type
options editor has a tabbed user interface containing these tabs for data type rules.

a Inherit rules- Specify inheritance rules for determining the data types. The inherit rules are
grouped under three categories: Common Simulink rules, Custom rules, and Advanced
Simulink rules. By default, the Common Simulink rules and Advanced Simulink rules are
available under Inherit rules tab. The Advanced rules section allows you to inherit rules
from breakpoint data, constant value, gain, table data, logic data, accumulator, product
output, and Simulink. It also allows you to have same word length as input and have same
data types for all ports. The Custom rules are listed under Inherit rules tab only if there are
any custom inheritance rules registered on the MATLAB search path. For definitions of some
Inherit rules, see “D